
International Journal of Science Vol.6 No.3 2019 ISSN: 1813-4890

128

TBFQC-A FASTQ Compressor Based on Karp Rabin and
Levenshtein Distance

Yingjie Chen

College of Information Science and Technology, Jinan University, Guangzhou 510632, China;

lionandcross@163.com

Abstract

Due to the development of sequencing technology, the volume of gene data grow explosively and

post great pressure to storage and transport. To solve this problem, this paper present TBFQC,

a lossless and reference-based method, to compress the FASTQ file, which is the most widely

used file format for gene data. For sequence part of FASTQ file, TBFQC employ Karb Rabin

algorithm to build index table of reference file for mapping the target sequence to reference

one. Then the difference between target and reference would be found through Levenshtein

Distance and replace the original data. Deflate and RLC would be use to handle the rest part

of FASTQ. Finally, TBFQC applies xz for obtaining higher compression ratio. The

performance experiment shows that TBFQC is a valid solution to reduce the volume of FASTQ

file.

Keywords

Fastq, Reference-based Compression, Karp Rabin Algorithm, Levenshtein Distance.

1. Introduction

Sequencing is a technique that analyzes and measures the base sequence of living thing from its blood

or organism. The earliest sequencing technology was the bright chain termination dideoxy chain

termination method invented by Sanger[1] in 1977 and the sequencing technique of chemical

degradation by Maxam and Gilbert[2]. The sequencing technology represented by this method is

called the first generation sequencing technology, and its advantage is high accuracy. The complete

genome sequencing of humans completed in 2003 is based on a generation of sequencing

technology[3]. However, due to the high cost, low throughput and long time of this kind of technology,
it can not meet the growing demand of whole genome sequencing, which affects the large-scale

application of sequencing technology. Therefore, the next generation of sequencing technology (NGS)

has emerged. NGS is also known as HTS High-throughput sequencing, including mature second-

generation sequencing and the development of third- and fourth-generation sequencing technologies.

At the expense of accuracy, NGS increases the throughput of sequencing, greatly reducing cost and

time, making large-scale sequencing of whole genomes possible. On the other hand, with the

application of biological information analysis technology, cancer treatment, precision treatment and

other fields have important applications[4].

With the development of sequencing technology and the important application of genes in various
fields, genetic data has exploded. According to the growth of past gene sequencing data, genetic data

can be doubled every 4-5 months. Even some studies speculate that after 2025[5], the growth rate of

genetic data will exceed the video, aviation and twitter data. On the other hand, the cost of sequencing

the whole genome has dropped below 1,000 since 2017[6], and will continue to decrease in the future.

Thus, the cost of sequencing will be less and less restrictive to the growth of genetic data.

The explosive growth of genetic data has brought enormous storage and transmission pressure to
bioinformatics researchers, which has restricted the further research and application of genetic data.

Computer is the main carrier for storing and processing genetic data. Although it will continue to

develop with the advancement of science and technology, its development rate is far less than the

International Journal of Science Vol.6 No.3 2019 ISSN: 1813-4890

129

growth rate of genetic data. Therefore, researchers are more inclined to use compression to deal with

the large amount of genetic data.

Compression can effectively reduce the size of computer files, save disk storage space, enable large
files to be transmitted faster on the network, and simultaneously solve the storage and transmission

problems caused by massive genetic data. However, the general compression method can compress

the gene data to the original 1/3-1/4[7] , and the compression effect still has not achieved satisfactory

compression effect. Traditional general compression algorithms are not fully applicable to this

problem. It is very meaningful to research and develop a compression algorithm for genetic data to

solve the problem of massive gene data.

The first compression purposed for gene data is Biocompress[8], which use the Fibonacci code to

compress the repeat and plalindrome occur in base sequence. After that, similar algorithm such as

DNACompress[9], CDNA[10], XM[11] are presented.

However, gene data are saved as specified format,such as FASTA and FASTQ with additional
information. The FASTA purposed method include DELIMINATE[12], MFCompress[13] and

LEON[14]. And the FASTQ purposed methods incldue DSRC[15], Fqzcomp[16] and Quip[17].

Beside those ,there are a special way to compress gene data that called reference-based method. This
method map the target sequence to known reference genome data and find the difference between

them. The different message replace original sequence in order to compress. The reference genome

data must be same species. Due homologous species have a genetic similarity of over 99 percent ,this

method can theoretically achieve a greatly reduced volume of genetic data.

This paper presents a lossless and reference-based compression method for FASTQ files, called
TBFQC, to reduce the volume of gene data efficiently. TBFQC apart the FASTQ file into three part,

that include identifier, sequence and quality score and use different scheme to compress them. For

sequence part, TBFQC design a reference-based method that applies Karb Rabin[18] algorithm to

map the target sequence to reference and Levenshtein Distance[19] to find out the difference between

target and reference sequence. Deflate and Run Length Coding[20]（RLC） are used to compress

identifer and quality score respectively. Finally, after those three part are encoded, TBFQC employs

the general compressor, xz, to compress the encoded result again for further compress. Out
experiment demonstrates that TBFQC could get a great compress ratio for FASTQ file.

The remainder of this paper is arranged for this flow. Section 2 introduces the prolegomena used in

TBFQC. Section 3 illustrates the framework and implementation of different scheme in TBFQC.

Section 4 presents the performance experiments about TBFQC on the HTS data sets from different

species and discusses some observations found in the experiment. Finally, Section 5 draws conclusion
based the experiment and explains some future work.

2. Materials and Methods

2.1 FASTQ

FASTQ is the most widely used HTS genome file format that saved base sequence and additional

information in ASCII coding. A FASTQ file contains many sequence blocks which represent four

lines. As depicted in Fig 1, Line 1 begins with character `@' and is followed by the identifier as the

identification of this sequence; Line 2 is the raw nucleotide sequence that use character to represent

the four different kind of bases and ; Line 3 starts with character `+' and can be optionally followed

by the same identifier with Line 1; Line 4 is the quality score, where the number of letters must be

equal to the symbols in line 2.

2.2 Karp Rabin Algorithm

The Karp Rabin (KR) algorithm, or Robin-Karp algorithm, is a string search algorithm proposed by

Richard M. Karp and Michael O. Rabin in 1987, which is often used for pattern matching problem.

The pattern matching problem is that finding the position of a string in text. The string is called pattern

string and the text is called main text.

International Journal of Science Vol.6 No.3 2019 ISSN: 1813-4890

130

The KR algorithm combines the hash function algorithm to effectively reduce the search time. Before

describe the algorithm, there are some notation should be decided. P means the pattern string and M

means the main text. The KR algorithm is used to find the position of P in T. The length of P and T

is m and n respectively. The hash function used in here is H(x).This specific algorithm is executed
as follows:

1)First, calculate the hash value of P and get H(x).

2) Starting from i=1 until i equal n, calculate the hash value of H(M[i...i+m]). Then compare whether
H(M[i...i+m]) and H(P) are equal.

3) If the two hash values are the equal, it is considered that M[i...i+m] and P may be the same, so
compare M[i...i+m] and P character by character. Output i if it is completely consistent, otherwise

set i equal i+1 return step 2.

The example of the KR algorithm is shown in Fig 2. The pattern string P is `GTCCA' and has a length

of 5. The main text M is `AAGGTCCAGTCA'. First get the hash value that H(`GTCCA'). Then,
starting from the starting position of M, a string of length 5 is taken to calculate its hash value. The

first sub-string is the 1st to 5th digits of M, that `AAGGT', whose hash value is H(`AAGGT'). It is

not equal to hash (GTCCA).So, take the second sub-string, namely the 2nd to 6th digits of M,

`AGGTC', and get H(`AGGTC') . However , they are not equal . Repeat those steps, then find the

same hash value in the position 4th ot to 9th. The two strings are compared character by character,

and found that they are completely same. It means that P occur in position 4 of T.

Fig 1. It is a sequence block in an example FASTQ file. A block include a nucleotide sequence, its

identifier and quality score. A FASTQ file contains many such block.

Fig 2. The example of KR algorithm. P is pattern string and M is the main string.

International Journal of Science Vol.6 No.3 2019 ISSN: 1813-4890

131

Fig 3. The example of LD algorithm. P is pattern string and M is the main string. Figure a to d is the

flow about the construction of LD matrix. And the figure e show how to get edit operation

2.3 Levenshtein Distance Algorithm

The Levenshtein Distance, also called edit Distance, refer to the minimum time of basic modify

operation to change a string another.

The basic modify operation, include three type that are insertion, deletion and substitution of one
character. For example, the Levenshtein Distance of `ACTG' and `NCG' is 2,

There is Levenshtein Distance(LD) algorithm that can calculate the edit distance as well as find the
edit operation, namely basic modify operation, between two strings. Consider that there are string A

and B whose length is m and n. And there are two string SAB and SBA which is null at the begin.

The specific process is as follows:

Create a matrix M with m+1 lines and n+1 columns. Fill this matrix as the formula below. temp is 1
if the A[i] equal B[j], or 0 if otherwise.

 (1)

2) Output the M[m+1][n+1] as edit distance.

3) Backtracking from M[m+1][n+1] to the M[0][0]. Find the minimum one from the neighbour of
M[i][j], namely M[i-1][j],M[i][j-1] and M[i-1][j-1]. If there are two or more minimum one, then

choose as diagonal, left ,right order. Take the minimum one as the next element to compare and set

the SAB and SBA as follow.

International Journal of Science Vol.6 No.3 2019 ISSN: 1813-4890

132

4) Reverse the SAB and SBA. And the edit operation can be got from string A, B, SAB and SBA

The example process of using the LD algorithm to find the edit distance and edit operation is shown
in Fig 3. The strings A and B are `ACGTGACT' and `ACCGACAC' respectively. Fig 3.A is the

initialization of matrix M. Fig 3.B calculates the value of M[1][1]. As A(1) = B(1) = A, temp is 0,

then the minimum of its neighborhood is 0. Thus M[1][1] is 0. And so on as Fig 3.B to Fig 3.C. Fig

3.D is the result of filling. Since M[8][8] is 4, the edit distance between A and B is 4. Then start from

$M[8][8]$ to get SAB and SBA. As shown in Fig 3.E, the red arrow is the backtracking path. The

three elements near M[8][8] are equal, so choose the element in the diagonal direction, which is

M[7][7] as the next element. Character `T' and `C' are added into SAB and SBA, respectively. Then,
backtracking from M[7][7] , the elements of M[7][6] are the smallest one, so choose it as next one

and put the elements `C' and `-' to the SAB and the SBA, respectively. Repeat the steps above until

M[0][0] and reverse SAB and SBA and archive `AC-TGACT' and `ACCGAC-C', respectively. Then

A can transform into B by deleting the third character , replacing the fourth bit by ‘C’, inserting ‘A’

into seventh digit and replacing the eighth bit by‘ C’.

3. TBFQC

The FASTQ file contains multiple gene data blocks, each of which can be divided into identifier,

sequence, and quality score. Since the data of those three parts have their own feature, the

implementing of this scheme is the following steps. First The FASTQ file is divided into three parts:
identifier, base sequence and quality score . Secondly, different coding methods, Deflate, KR

algorithm combined with LD algorithm and RLC, are adopted for the three parts. Finally, for further

compressed, those encoding results are compressed by using xz, a general compressor. The program

framework illustrated in Fig 4.

Fig 4. The framework of TBFQC compressor

3.1 Deflate compression of identifier

The identifier includes the first and third rows of each gene block in the FASTQ file. Since the

identifer of third line is optional and same with first line, compression of this part only consider the

feature of the first line. The identifer is used to uniquely identify the short read sequence. It starting

with the character ‘@’, followed by the sequencing instrument model, the flow cell number used for

sequencing, the lane number, the sample number, whether it is single-ended, sequence read length,

etc. As all the sequences in a FASTQ file are obtained in one sequencing, the identifer of all sequences

in a FASTQ file are highly similar.

Thus, TBFQC use deflate algorithm, a kind of LZ77 style algorithm, to handle identifer. This k After
that, the identifier will be further compressed using xz.

International Journal of Science Vol.6 No.3 2019 ISSN: 1813-4890

133

3.2 Reference-based compression of base sequence

The base sequence only contains five characters `ACTGN'. Since the base sequences among

homologous organisms are highly similar, this part of the data is compressed by reference-based

algorithm. In general, the reference-based algorithm execute as follow. First, find the position of the

target gene sequence on the reference genome. Second, obtain the difference information between the

two strings. And finally, encode the difference information and replace the original sequence.

The first step is a pattern matching problem actually. The reference is the main string, and the target

sequences are a large amount of pattern strings. Thus, TBFQC try to use the KR algorithm to do it.

Before the search operation,a hash table, or a key-value dictionary of reference genome is constructed .
The reference genome sequence, which is always too long, is divided into a plurality of small

fragments according to k bases, and each fragment is calculated its hash value by a hash function.

Hash value as key and the offset of base fragment as value would be combined as a pair and put into

the dictionary. The hash collision is inevitable, so the linear probing is used to solve this problem.

Then find the matching position of each target sequence in reference genome through the hash table.
TBFQC use a sliding window of size k to calculate a hash value of k bases in the target sequence.

The hash function used in search must be same as the function used in create hash table. If the value

of sub-sequence in hash value is not empty, it means that there are a base fragment in genome might

same with the sub-sequence. Then TBFQC move into next step of finding the difference information.

In order to facilitate step of finding the difference information, the character N in both the reference
genome and the target sequence will be extracted. The N in the reference genome are discarded, and

the N in the target sequence are stored by its position. The location information will be used in

decompress.

Finding the difference information between the reference genome and the target sequence can be
regarded as calculating edit distance and edit operation between them. Therefore, the LD algorithm

International Journal of Science Vol.6 No.3 2019 ISSN: 1813-4890

134

is used to compare the two gene data to find the different between matching position of the reference

genome and the target sequence. The length of the target base sequence is generally from 50 to 250

bases. If the LD algorithm take the entire sequence as input , the LD matrix is large, which leads to a

long operation time. According to the purpose of greedy algorithm, TBFQC does not directly seek
for the globally optimal solution, instead of local optimal solution by dividing the problem into

pieces, find the optimal solutions of locally problem and then combine them as the solution of the

problem. Starting from the matching position of the reference genome and the target sequence, every

b bases is selected as the input string,that A and B, of the LD algorithm to get the edit distance and

edit operation.

The transform operation of transforming the sub-string A of the reference genome to the target
sequence string B is taken as a local optimal solution. The sub-string of the next b-length of the

reference genome and the target sequence is then used as the new A, B string, and the edit distance

and editing operation are again obtained by the LD algorithm, and then merged with the known result.

The above steps are repeated until the target sequence is traversed or the edit distance of the current

solution exceeds the threshold t. The selection of the threshold t is related to the encoding.

Finally, the matching result is encoded and used to replace the original target base sequence. Two
encoding methods are used depending on the matching result. If the match is successful, the matching

position and the editing operation that transforming the reference genome into the target sequence is

saved to replace the original sequence. The matching position is stored in 4 bytes. There are four

types of editing operations, namely matching, replacing, inserting, and deleting. It can be encoded

using only the ASCII character set that (A,C,G,T,F,H,L,Y,D) and the numbers from 0 to 9. The

number indicates the number of consecutively matched bases. The character `A',`C',`G' and `T'

indicate the substitution of the corresponding base. `F',`H',`L' and `Y' indicate the insertion of four

bases that `A',`C',`G' and `T', respectively. D is used to indicate the deletion. Not all the sequence can
find the matching position in the reference genome. For those unmapped target sequences and the

unmapped sub-sequence of the matching target sequence, they are encoded by bit code that A=00,

C=01, G=10, T=11. The original ASCII code used one byte, or 8 bits, to represent one base, and under

bit coding, one byte can represent four bases. Therefore, the edit distance d should be less than one

fourth of the b .

The encoded base sequences are further compressed by using the xz universal compression program.

3.3 RLC of Quality Score

The quality score is generated during the sequencing process. Each quality score that corresponds to

one base is used to indicate the accuracy of sequencing. The quality score is expressed in ASCII code
but in different the coding scheme according to different sequencers. Usually, a FASTQ file contains

up to 40 characters for representing the quality score in pseudo-random distribution, so the lossless

compression of this part of the data is very difficult.

In fact, as development of sequencing technology, the quality score shows the continuous appearance
of the same character. As shown in Figure 1, the short read sequence SRR0016666.1 contains 22

consecutive characters `I'. Based on this feature, the quality score is suitable for using Run-Length-

Coding(RLC) to encode.

Consider that n is the consecutive number of a character, which is called the run length. For the every

quality score q, when n>=2 , the consecutive occurrence of q is represented by 2 bytes. The first byte
is the ASCII code of q, and the second byte is the run length n. When n>256, consecutive q will be

split into multiple sub-continuous quality score part to encode. When n=1, the byte is represented by

1 byte which is set the highest bit position to 1. The purpose of such encoding is to distinguish the

discontinuous characters from the continuous characters in order to facilitate decoding.

For example, the quality score of a sequence is `FFFBHHHHH' and will be encoded as ‘F3’ Bs H5.
F and H are ASCII coded characters and is followed by its run length 3 and 5 respectively. Bs is the

International Journal of Science Vol.6 No.3 2019 ISSN: 1813-4890

135

result of the highest position after ASCII encoding is 1. The result saved in hexadecimal is that 0x46

0x03 0x42 0x48 0x05.

The quality scores processed by the RLC are further compressed by using the xz universal
compression program.

4. Experiments

4.1 Experiment configuration

To evaluate the performance of TBFQC, a machine with 32-core 1.70GHz cores Intel Xeon CPU

E5-2609 and 64GB memory in 64-bit CentOS Linux release 7.5.1804(core)was used in the

experiments. The compressor written by C++ takes a target FASTQ file and a reference FASTA file

as input ,and outputs the compressed file. To obtain the original FASTQ file, the compressed file and

the same reference file are required.

The details about experiment data set from different species are shown in Table 1. The FS0024 is
provided by a private company. The SRA data that with prefix name of SRR are downloaded from

the SRA of NCBI; and the ERR data sets are contributed from The European Bioinformatics

Institute(EBI) [21]. All other data sets are paired-end data except ERR231645 and ERR233152. The

reference data used in the experiments are downloaded from Ensembl[22].

Since the SRA data have the same identifier in third line of every gene block, they can not be
compressed by some related compressor. Those optional identifier in third line of gene block is

deleted so that the all compressors can take the data as input.

Table 1 The detail about FASTQ dataset

Dataset Species
Read

Length
Size(GB) Source Reference Ref.Size

FS0024 Sus scrofa 2*135 2.51 Private Sscrofa11.1 2.4GB

ERR231645 E.coli 51 1.41 EBI NC_000913

ERR233152 P.aeruginosa 77 0.72 EBI Ap014622

SRR7174087 Homo 2*51 6.59 NCBI Hg19

SRR327342 S.cerevisiae 2*63 5.57 EBI ACFL01

SRR554369 Pseudomonas 2*100 0.71 EBI KI517354

SRR935126 A.thaliana 2*76 9.6 EBI GCF_000001735.4

SRR489793 C.elegans 2*101 12.6 EBI WBcel235

SRR352384 S.cerevisiae 2*76 9.6 EBI ACFL01

4.2 Experiment results

First experiment is used to compare the compress performance of TBFQC with the other state-of-

the-art compressor purposed for FASTQ, including DSRC[15], Fqzcomp[16], Quip[17]. The general

compressor- GZIP is also included in this experiment and its compress result would be the standard

measure in this competition as it is the most widely used compressor to compress FASTQ file. Result

of this experiment is shown in Table 2 and it demonstrated that TBFQC can obtain higher compress

ratio than the other compressor statistically.

Table 2 Compression result
Data gzip dsrc(best) fqzcomp quip -r TBFQC

FS0024 4.17 5.79 7.13 7.65 9.28

ERR231645 2.57 4.33 5.10 4.98 4.53

ERR233152 2.92 4.33 5.92 5.88 5.51

SRR7174087 5.06 9.17 14.44 16.22 15.93

SRR327342 2.92 4.00 4.80 5.01 4.97

SRR554369 2.82 3.88 4.51 4.37 4.93

SRR935126 3.22 4.68 5.64 5.66 5.52

SRR489793 2.85 3.84 4.43 4.43 4.84

SRR352384 4.03 6.63 7.53 8.16 8.38

International Journal of Science Vol.6 No.3 2019 ISSN: 1813-4890

136

Avg 3.39 5.18 6.61 6.93 7.10

S.D 0.83 1.77 3.14 3.73 3.71

The compression time of the first experiment is shown in Table 3. The fastest compressor is DSRC

and the slower one is TBFQC overall. TBFQC get higher compression at the cost of time.
Table 3 Compression time

Data gzip dsrc(best) fqzcomp quip -r TBFQC

FS0024 295 6 40 130 2960

ERR231645 106 4 15 35 435

ERR233152 114 2 24 12 212

SRR7174087 551 12 131 224 3100

SRR327342 711 9 123 151 2716

SRR554369 114 2 20 22 365

SRR935126 1235 10 186 246 4005

SRR489793 1644 12 298 402 7141

SRR352384 1133 10 147 249 3801

Second experiment is used to evaluate the performance of different scheme to handle three
components of FASTQ. As illustrated in Table 4, the compression of identifier is best compressed

that has the largest average compression ratio 416.88, and the largest standard deviation 826.67. It

demonstrated that the scheme for identifier can get higher compression ratio in special case. The

scheme of base sequence has second average compression ratio 9.30 but get the smallest standard

deviation. It means that compression of sequence is stable and can get a great compression ratio. The

smallest compression ratio for quality score means that RLC is not well scheme for quality and should

be modified if want to get higher compression ratio for FASTQ compressor

Table 4 Part compression

Dataset Identifier Base Quality

FS0024 7.41 16.98 6.49

ERR231645 7.53 7.85 2.31

ERR233152 8.90 5.67 4.11

SRR7174087 2500.00 8.12 18.18

SRR327342 9.98 8.46 2.32

SRR554369 434.78 8.30 2.87

SRR935126 7.54 9.57 3.33

SRR489793 769.23 7.95 2.79

SRR352384 6.55 10.79 7.56

Avg. 416.88 9.30 5.55

S.D. 826.67 3.19 5.09

Fig 5. The figure about compression ratio of TBFQC in large scale dataset

International Journal of Science Vol.6 No.3 2019 ISSN: 1813-4890

137

Finally, there are 40 FASTQ files to evaluate the overall performance of TBFQC. The range of their

size sre from 2.8GB to 4.7GB. Result is shown in Figure \ref{figure:large_compression}. It provided

that this method is stable and get a desirable result for large amount of FASTQ files.

4.3 Discussions

The impact of quality score

As shown in Table \ref{table:compression result}, ERR231645,SRR327342,SRR801793,that are
microorganism data, have the lower compression ratio than other data set. And we found that they

are also get lower compression ratio for the quality score from Table \ref{table:part compression}.

The quality score scheme is not suitable for those microorganism data. It is a obstacle for reducing

those data volume.

The impact of reference size to compression time. According to the Table \ref{table:compression
time}, ERR231645, SRR327342, SRR801793, ERR233152 has the lower compression time than

FS0024,SRR7174087,SRR7174187. One of the reason is that the size of former is smaller than the

latter. The another one is the size of reference file. Those reference files are from 20MB to 40 MB,

but the sus_scofa and human reference is 2.4GB and 3.0GB. Because the size of latter reference are

far exceed the former, it cause a huge difference in cost time.

5. Conclusion and Future Work

The exponential growth of genetic data poses a huge challenge for storage and transmission of gene

data. Use traditional compression tools to solved this problem become past. This paper present a

FASTQ file compressor, as TBFQC, in order to compress the gene data in lossless way. TBFQC aprat

the FASTQ file into identifier, base sequence, quality score and use deflate, reference-based and RLC

to encode them respectively. The reference-based scheme is combined the Karb Rabin and

Levenshtein Distance to achieve difference between target and reference. After the encoded operation,

TBFQC use xz to compress the FASTQ file further. The experiment about TBFQC shows that this

method can compress the FASTQ file effectively at the cost of time. The quality score scheme is not

perfect and should be modified for improving the FASTQ method.

References

[1] Langeveld SA, van Mansfeld AD, Baas PD, Jansz HS, van Arkel GA, Weisbeek PJ. Nucleotide

sequence of the origin of replication in bacteriophage phiX174 RF DNA. Nature.

1978;271(5644):417{20.

[2] Maxam AM, Gilbert W. A new method for sequencing DNA. Proceedings of the National

Academy of Sciences. 1977;74(2):560{564.

[3] Mestan KK, Ilkhanoff L, Mouli S, Lin S. Genomic sequencing in clinical trials. Journal of

Translational Medicine,9,1(2011-12-30). 2011;9(1):222{222.

[4] Meldrum C, Doyle MA, Tothill RW. Next-Generation Sequencing for Cancer Diagnostics: a
Practical Perspective. Clinical Biochemist Reviews. 2011;32(4):177.

[5] Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big Data: Astronomical

or Genomical? Plos Biology. 2015;13(7):e1002195.

[6] KA W. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program

(GSP);.https://www.genome.gov/sequencingcostsdata/.

[7] Deorowicz S, Grabowski S. Compression of DNA sequence reads in FASTQ format.

Bioinformatics.2011;27(6):860.

[8] Grumbach S, Tahi F. Compression of DNA sequences. In: Data Compression Conference; 1993.

p.340{350.

[9] Chen X, Li M, Ma B, Tromp J. DNACompress: fast and effective DNA sequence compression

Bioinformatics. 2002;18(12):1696.
[10] Loewenstern D, Yianilos PN. Significantly lower entropy estimates for natural DNA sequences.

Journal of Computational Biology. 1999;6(1):125{142.

International Journal of Science Vol.6 No.3 2019 ISSN: 1813-4890

138

[11] Cao MD, Dix TI, Allison L, Mears C. A Simple Statistical Algorithm for Biological Sequence

Compression. In: Data Compression Conference; 2007. p. 43{52.

[12] Mohammed MH, Dutta A, Bose T, Chadaram S, Mande SS. DELIMINATE{a fast and efficient

method for loss-less compression of genomic sequences: sequence analysis. Bioinformatics.
2012;28(19):2527{2529.

[13] Pinho AJ, Pratas D. MFCompress: a compression tool for FASTA and multi-FASTA data.

Bioinformatics. 2014;30(1):117.

[14] Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, et al. Reference-free

compression of high throughput sequencing data with a probabilistic de Bruijn graph. Bmc

Bioinformatics. 2015;16(1):1{14.

[15] Roguski u, Deorowicz S. DSRC 2|Industry-oriented compression of FASTQ files.

Bioinformatics. 2014;30(15):2213.

[16] Bonfield JK, Mahoney MV. Compression of FASTQ and SAM Format Sequencing Data. PLOS

ONE. 2013;8(3).

[17] Jones DC, Ruzzo WL, Peng X, Katze MG. Compression of next-generation sequencing reads
aided by highly efficient de novo assembly. Nucleic Acids Research. 2012;40(22):e171.

[18] Karp RM, Rabin MO. Efficient randomized pattern-matching algorithms. IBM journal of

research and development. 1987;31(2):249{260.

[19] Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet

physics doklady. vol. 10; 1966. p. 707{710.

[20] Robinson AH, Cherry C. Results of a prototype television bandwidth compression scheme.

Proceedings of the IEEE. 2005;55(3):356{364.

[21] https://www.ebi.ac.uk/.

[22] http://uswest.ensembl.org/info/data/ftp/index.html.

