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Abstract 

In this paper, we study the  fundamental systems of   in spherical t-design when N = 2t + 1. 

Therefore, we present a lemma to connect the fundamental system with spherical t-design. 
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1. Introduction 

Considering 2-dimensional unit sphere 2 . The concept of spherical t-design was introduced by 

Delsarte et al. [1]. 

Definition 1.1 A finite set 
1X : { , , }N Nx x  is a spherical t-design, then will satisfy 
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(1) 

where 2: ( )t t   is the space of spherical polynomials on 2 with degree at most t and d ( )x  

denotes the surface measure on 2 . 

A lower bound on the number of points N to construct a spherical t-design for any 1t   on 2 was 
given in [1]. From then on, the relation between t and N has been studied extensively [2-6]. 

Finding spherical t-design has been expressed as equivalent conditions [7,8]. Fundamental spherical 
t-design has been studied in [8] for certain non-linear equation systems. However, the lower bound 

of N to construct a fundamental spherical t-design remains to observe. In this paper, we find the lower 

bound of N for fundamental system in spherical t-design based on the work [9]. 

The paper is organized as follows. In the next section, we introduce the required knowledge. In section 

3, the non-existence of fundamental system of degree t in spherical t-design is proved and the 
conditions of fundamental spherical t-design is given. Section 4 ends this paper with a brief 

conclusion. 

2. Preliminaries 

The addition theorem for spherical harmonics on 2  gives 
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Sloan and Womersley [7] studied (2) and presented an important proposition of spherical t-design. 

Proposition 2.1 A finite set 1X : { , , }N Nx x  is a spherical t-design if and only if 
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And then, Dai and Xu [9] gave some properties to these spaces and founded the fundamental system 

of a certain degree on the sphere. Let 
1{ ,..., }Nx x   be a finite set of point on 2 , where 2 1N n  . We 

define matrices 
kM   similar to [9], presented as 
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For k=1,...2n+1. 

3. Main Results 

According to the theorem and lemma from [9], we obtain the lemma 3.1 immediately. 

Lemma 3.1 A finite set 
1X : { , , }N Nx x  is called a fundamental system of degree n for 

n
  on the 

sphere 2  if 
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Proof. Firstly, 1 2 1{ ,..., }i

i iY Y   is a set of basis for 
i

 for i=0,…,n. Secondly, we know that 

0 1n nH H H    . Thus, there exist a set of basis 1 2 1

0{ ,..., }n

nY Y  to generate a fundamental system 

XN
 with 2 1N n    for 

n  . Suppose XN
 is a fundamental system for 

n . According to [9], we 

know 
2 1det( ) 0iM    for i=0,…,n. Therefore 2 1 2 1

0
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n
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  and the proof is complete. 

By studying the fundamental system, we give a proposition to think of the lower bound of 
fundamental system in spherical t-design. 

Proposition 3.2 Suppose a finite set 
1X : { , , }N Nx x  with N=2t+1 and t>1 is a spherical t-design. 

Then XN
 is not a fundamental system of degree t. 

Proof. According to Proposition 2.1, if  XN  is a spherical t-design, then by the property of 

determinant we have 2 1det( ) 0tM   . Hence we complete the proof. 

4. Conclusion 

In this paper, we discover the fundamental system in spherical t-design, and presented a lemma to 

connect them. 
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