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Abstract 

Existing intuitionistic fuzzy C-means clustering algorithm cannot find non-convex clustering 

structure. To solve this problem, an intuitionistic fuzzy clustering algorithm based on Cauchy 

kernel function is proposed in this paper. The Cauchy kernel function is used to transform the 

intuitionistic fuzzy Euclidean distance into an intuitionistic fuzzy number and particle swarm 

optimization is used to optimize the objective function. In theory, the algorithm can complete 

intuitionistic fuzzy clustering quickly and accurately. 
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1. Introduction 

Ruspini [1] introduced the Zadeh fuzzy set theory into cluster analysis, first proposed the concept of 

fuzzy partitioning. Subsequently, the researchers proposed a variety of fuzzy clustering analysis 
methods, it mainly includes fuzzy equivalence relations-based transitive closure methods, methods 

based on similarity relations and fuzzy relations, and maximum tree methods based on fuzzy graph 
theory. However, due to the high computational complexity, these methods are difficult to apply to 

big data problems and real-time requirements, so they have gradually lost value in practical 
applications and research [2]. As one of the most important forms of Zadeh's fuzzy theory, the 

intuitionistic fuzzy set (IFS) increases the hesitation attribute parameters, which further expands and 
enhances the description and processing functions of fuzzy set theory on complex uncertainty 

knowledge. At the same time, it provides new ideas and methods for the modeling and processing of 
fuzzy uncertainty information [3]. 

In 1995, Cortes and Vapnik [4] proposed the Support Vector Machine (SVM) theory. SVM 
demonstrates better performance than traditional classifiers in many areas, making kernel methods 
increasingly valued and applied to all aspects of machine learning [5, 6]. Girolami [7] creatively 

proposed the fuzzy kernel c-means algorithm (FKCM) algorithm to solve the problem that the FCM 
algorithm can not find the non-convex clustering structure. Girolami [7] proposed an Intuitionistic 

Fuzzy Kernel c-means Clustering Algorithm (IFKCM). However, the sum of the memberships of the 
samples relative to each category is 1, which is inconsistent with the idea of intuitionistic ambiguity. 

Piciarelli C. et al [8] proposed a kernel clustering method for adaptively determining the number of 
clusters by extracting the geometric properties of kernel space. In [9, 10], a compromise weight fuzzy 

factor and kernel distance metric are introduced in the classical FCM algorithm, and a kernel 
clustering algorithm based on fuzzy factor is proposed and applied to the field of image segmentation. 

Among them, the closeness can be used as the price index of the optimal attribute value and the worst 
attribute [11, 12], and can also be used to make attribute simplicity [13], which has attracted wide 

attention of researchers [14, 15].  

Based on the concept of intuitionistic fuzzy class C-means clustering, an intuitionistic fuzzy 
clustering algorithm based on Cauchy kernel function is proposed in this paper. The Cauchy kernel 

function is used to transform the intuitionistic fuzzy Euclidean distance into an intuitionistic fuzzy 
number, and the particle swarm optimization algorithm is used to optimize the objective function. In 

theory, the algorithm can complete intuitionistic fuzzy clustering quickly and accurately, and solve 
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the problem that the original intuitionistic fuzzy C-means clustering algorithm can not find the non-

convex clustering structure. 

2. Intuitionistic Fuzzy Clustering Based on Cauchy Kernel Function 

2.1 Intuitionistic fuzzy set theory 

Given a data set  1 2= s
N   x x xX R , which is a set of finite set of observations for N patterns in 

the pattern space. ( )1 1 1 2 2 2

T

i i i i i i i is is is        =        x x x x x x x x x x is the eigenvector of the observed 

sample, and the assignment ij ij ij   x x x  of the eigenvector on each dimension is an 

intuitionistic fuzzy number.  1 1 K=  P p p p  is a set of K clustering prototypes, K is the number of 

cluster categories and kp is the clustering prototype vector of the k-th class, where 

( )1 1 1 2 2 2=
T

k k k k k k k ks ks ks               p p p p p p p p p p . The assignment =
T

ik ik ik ik   p p p p on the i-

dimensional feature of kp is also an intuitionistic fuzzy number. 

2.2 Similarity criterion 

Both the sample ix and the cluster prototype kp can be represented by an intuitionistic fuzzy set, and 

the distance measure function between them can be defined as follows: 
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           

     

             (1) 

Where ix , ip represents the membership degree vector. ix , ip represents the non-membership 

degree vector. ix , ip represents the hesitation degree vector. + +i i i   =x x x I , 

+ +i i i   =p p p I ( I  is the s-dimensional unit vector) is satisfied. The matrix W is the weighted 

diagonal matrix. 
2

•  represents the L-2 norm. ( )1 2i i s =     is the weight added to the i-

dimensional feature and i  satisfies the normalization condition as shown in equation (2). 

                                                               
( )

1

1
s

i

i s
=

=
                                                                    (2) 

The matrix W can be expressed as follows: 

                                             
 1 2 sdiag   =   W

                                                                     (3) 

Rewrite equation (1) as a kernel function: 

           

( )

2 2 2
1 1 1 1 1 1

2 2 2 2 2 2
1ˆ
2

i k i k i k i k      
           

 = − + − + −           
           

D x p W x W p W x W p W x W p     

            (4) 

( ) •  is the mapping function. It is easy to prove that equation (4) satisfies the four axioms of the 

intuitionistic fuzzy set dissimilarity measure, which can be used as the distance measure formula 
between intuitionistic fuzzy sets. The norm in the formula can be further expressed as: 

                                
( ) ( ) ( ) ( ) ( ) ( )

2

K K K K − =  +  −  − x p x x p p x p p x
                              (5) 
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( )K •  is the kernel function. Use the Cauchy kernel function: 

                                                      

( ) 2

1

1
K


 =

+ −
x p

x p
                                                          (6) 

 indicates the standard deviation. Obviously the Cauchy kernel function satisfies the following 

properties: 

                                                   

( )
( ) ( )

1K

K K

  =


 = 

x x

x p p x
                                                                     (7) 

Bring the Cauchy kernel function into equation (5): 

                                        
( ) ( ) ( )

2

2 2K − = − x p x p
                                                               (8) 

Therefore, equation (4) can be expressed as:          

( )
1 1 1 1 1 1

2
2 2 2 2 2 2ˆ 3i k i k i k i kK K K

     
 = −  −  −      

     
D x p W x W p W x W p W x W p                           (9) 

2.3 Parameter solving 

2.3.1 Objective function 

Firstly, the objective function of intuitionistic fuzzy clustering based on Cauchy kernel function is 

given: 
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Where m is the smoothing parameter. U is the kernel-based fuzzy partition membership matrix; U

is the kernel-based fuzzy partition non-membership matrix. The constraints of the objective function 
are: 
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2.3.2 Cost function 

Here the cost function takes the minimum value of the objective function, that is: 

                                                
( ) ( )arg min mJ  


 =  U U Pl

                                                        (12) 

Formula (13) can be obtained from the Lagrange theorem: 
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2.3.3 Parameter Determination Based on Particle Swarm Optimization Algorithm (PSO) 

The parameters that need to be solved are   k k kp , p , p . 
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Suppose that in an s-dimensional target search space, there are N particles forming a community, 

where the i-th particle is represented as a vector of s-dimensional, and the speed at time t is updated 
as follows:     
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Where ( )t
iD
V represents the speed change of the i-th particle at time t. 1 2

,c c represents a learning factor, 

indicating a pseudo-random number uniformly distributed in the region, the value range is [0, 1]. ( )t
iD
p

represents the best historical position of the i-th particle experienced at time t. 
( )t
gD
p represents the best 

position experienced by all particles in the group at time t and ( )t
iD
W represents the position of the i-th 

particle at time t.  

After the speed update, the update of position of current time is performed. The parameter location is 

updated as follows: 
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According to + +k k k   =p p p I , the following formula can be obtained: 

                                                        k k k= − −p I p p  
                                                            (16) 

Repeat the above steps until convergence. 

3. Conclusion 

In this paper, the kernel method and the intuitionistic fuzzy clustering algorithm are effectively 

combined and an intuitionistic fuzzy Euclidean distance based on Cauchy kernel is proposed. Then 
an intuitionistic fuzzy c-means clustering algorithm based on Cauchy nucleation distance is proposed. 

The algorithm solves the problem that the classic intuitionistic fuzzy c-means clustering algorithm 
can not find the non-convex clustering structure. 
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