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Abstract  

The flower pollination algorithm (FPA) has some disadvantages, traditional improvement 

algorithms of FPA are mainly focused on several parameters, an improved FPA algorithm with 

gravity center reconstruction and Cauchy mutation is proposed. The gravity center 

reconstruction is used to reduce the optimization space. And then Cauchy mutation is used for 

random perturbation to increase the diversity of the population, avoid the algorithm falling into 

local optimum, and improve the ability of global search. The simulation results for several 

benchmarks show that compared with the traditional search algorithms, the new algorithm has 

better local convergence speed and solution quality. 
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1. Introduction 

Flower pollination algorithm (FPA) is an evolutionary algorithm for simulating pollination behavior 
of flowers [1]. Compared with other evolutionary algorithms, it has simple concept, fewer parameters 

and is easy to implement. As a new intelligent optimization algorithm, FPA has been successfully 
applied to the function optimization, meteorological prediction, engineering design, and has good 

performance on the related fields [2, 3]. 

At present, many scholars have proposed many different improvement strategies. The improvement 
methods mainly focus on the parameters and pollination methods in FPA, including probability size, 

Levy distribution coefficient in global pollination and uniform distribution system in local pollination. 
Dynamic handover probability is designed to improve the search ability of the algorithm [4]. Based 

on the sine-cosine algorithm, the local convergence problem is solved by embedding the sine-cosine 
algorithm into the basic FPA [5]. Wang introduces adaptive step size in cross-pollination to improving 

search ability [6]. To improve the convergence speed of the algorithm in the later stage, individual 
Levy flight and gravity is used to update individual position [7]. To a certain extent, these methods 

above have improved the search ability of the algorithm and achieved good results for specific 
problems. However, there are still some problems, such as slow evolution in the early stage, difficult 

convergence of the algorithm, and poor global search ability in the later stage. 

 A hybrid algorithm of gravity center reconstruction and FPA is presented in this paper. Based on the 
principle of leverage force balance, the search space is reasonably compressed and simplified by 

reconstructing the center of gravity of the function, so as to improve the local search ability in the 
early stage of the algorithm. At the same time, the inert mutation mechanism is introduced in the later 

stage of the algorithm to enhance the climbing ability of the algorithm and jump out of the local 
optimum. The simulation experiment of the test function shows the effectiveness of the improved 

algorithm.  

2. Basic FPA 

The basic FPA is an evolutionary algorithm inspired by the pollination behavior of flowers in nature. 
Studies have shown that 90% of the pollination behavior in nature is alienated pollination, while the 
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other 10% is self-pollination. Based on this research, Yang proposed FPA algorithm in 2012[1]. The 

steps of basic FPA are as follows. 

Step1 Setting and initializing the basic parameters of FPA: the number of variables, the range of 
values of each variable, the conversion probability, the number of populations, the maximum number 

of iterations, etc. 

Step2 Generating initial solution
t

ix : according to fitness function, calculating the fitness value and 

selecting the current optimal value from the initial solution as the current global optimal solution *g . 

Step3 Producing the random number rand , and comparing it with the conversion probability p . If

p rand , carrying out the global search according to formula (1), in which L is the step size obeys 

Levy distribution.  

                           
1 *( )t t t

i i ix x L x g+ = + −                                                           (1) 

Step4 Otherwise, if there p rand , carrying out the local search according to formula (2), where

is the step size obeys uniform distribution. 

                          
1 ( )+ = + −t t t t

i i j kx x x x                                                          (2) 

Step5 Comparing the new solution with the previous one, if the new solution is better than the former 
one, the former one will be replaced by the new one, otherwise the former one will be retained and 
the next one will be transferred. 

Step6 Determining whether the maximum iteration condition is satisfied, if it is true, stopping the 
iteration and outputting the optimal solution; otherwise, turning to Step3. 

3. Gravity Center Reconstruction 

3.1 Relationship between Gravity Center and Optimal Solution 

According to the principle of mechanics, the lever principle shows that the center of gravity of an 

object is always close to the area with dense mass distribution, and the sparser the area is, the farther 
away it is from the center of gravity. In order to maintain the moment balance, the closer the point 

with larger mass is from the center of gravity, the farther the point with smaller mass is from the 
center of gravity. As shown in Figure 1, for a closed area surrounded by a function ( )f x , C is the 

maximum value of the function. Through analysis, we know that the "center of gravity" G of ( )f x is 

near the maximum value. 
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Fig. 1 Relationship between gravity center and optimal solution 

3.2 Gravity Center Reconstruction 

For complex optimization problems, there are many peaks in the function value, and the probability 

that the center of gravity of the obtained function falls into the neighborhood of the global optimal 
value becomes lower, which makes it difficult to find the neighborhood of the global optimal value 

directly according to the position of the center of gravity of the original function, so it is necessary to 
reconstruct the center of gravity of the function. In this paper, we use function filling technique to 

design transformation functions as follows [8]. 
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The result after filling in the transformation function (3) is shown in Figure 2. 
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Fig.2 Function filling effect 

By adjusting parameter  , the original optimization space of the function is divided, and the search 

area larger than   remains unchanged. The region less than   is filled with function value   to 

reduce the proportion of local extremum in search space, thus increasing the relative proportion of 

global optimal extremum, reconstructing the position of center of gravity in function space, and 
increasing the probability of center of gravity falling in the neighborhood of optimal value. 

4. Improvement of FPA 

4.1 Improvement of Search Space 

Based on the analysis in Section 3, formula (4) is used to iteratively update the position of the center 
of gravity to realize the reconstruction of the optimization space. 

( )

2

( )

2

( ) ( ) ( ( ))

( )

( ) ( ( ))

=

=

+

=

+





M k

p p i i
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G M k

p i

i

x F x x k F x k

x k

F x F x k

                                                   (4) 

In which, px  and ( )pF x  are the optimal solutions and their function values in (k-1)th
 iteration, and

( )M k , population size, is the number of individual solutions generated in the search area in k
 th

 

iteration. 

Assuming that ( ) / ( 1) 1 = − O k O k , then the search range is ( ) (0)= kO k O  after k iterations, where 

(0)O  is the original search area, we obtain the initial search space of the improved FPA as formula 

(5). 

( ) ( )
[ ( ) , ( ) ]

2 2
= − +init G G

O k O k
O x k x k                                              (5) 

Where, ( )O k  is the search space of k
 th

 iteration. 

4.2 Cauchy Mutation 

Cauchy distribution is a continuous probability distribution with probability density, its function is 

0 2 2
20 0

1 1
( : , ) [ ]

( ) ]
[1 ( ) ]




 




= =
− + −

+

f x x
x x x x

                                  (6) 

In which, 0x  is the location parameters of distribution peak,  is the scale parameters of half width 

at half maximum. When 0 0=x , 1 = ,formula (6) can be rewritten as the standard Cauchy 

distribution in formula (7). 

2

1 1
( ) ( )

1
=

+
f x

x
                                                              (7) 
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In cross-pollination, the adaptive step size is used instead of the original step size, which makes the 
algorithm maintain a larger step size in the initial stage and improve the ability of searching the 
optimal solution. The smaller step size in the later stage is beneficial to improve the accuracy of the 

algorithm. The new step size is defined as follows. 

max30 ( / 2000)
e 0.0001

− 
=  +

T
L L                                                   (8) 

In self-pollination, the Cauchy mutation is used for random perturbation, which will help to increase 
the diversity of the population, avoid the algorithm falling into local optimum, and improve the ability 

of global search for the best value. The Cauchy mutation is as in formula (9). 
1 (0,1) ( ) + =   + −t t t t

i i j kx Cauchy x x x                                       (9) 

Where, 
max

max


−

=
T t

T
, (0,1) tan[( 0.5) ] = −Cauchy , [0,1] U . 

4.3 Steps of Improved FPA 

Based on the above analysis, the steps of the improved FPA are as follows. 

Step1 Setting the basic parameters of gravity center reconstruction: population size of gravity center 
reconstruction ( )M k , search range compression ratio , parameters of filling function  and  , range 

of values of variables, iteration times k . 

Step2 Filling the original function space by formula (3) and generating a new center of gravity by 
formula (4). 

Step3 Determining whether the number of iterations is satisfied, if true, turning to the next step; 
otherwise returning to Step2.  

Step4 Initialize the FPA parameters with initO  as the initial search space. 

Step5 According to the comparison results of rand  and conversion probability p , calculating the 

new solution by formula (1) , formula (2), formula(8) and formula(9). 

Step6 Calculating the fitness of the new solution and replacing the corresponding variables if the new 
fitness is better than the optimal fitness. 

Step7 Determining whether the maximum iteration condition is satisfied, if it is true, stopping the 
iteration and outputting the optimal solution; otherwise, turning to Step4. 

5. Simulation and Analysis 

To test the solving effect and convergence speed of the improved FPA (IFPA) in this paper, we select 

four basic single-mode and multi-mode functions in [9] by using particle swarm optimization (PSO), 
harmony search (HS), FPA and IFPA respectively. The four test functions are as follows. 

1) Sphere Function 

2

1

1

( )
=

= 
n

i

i

f x x , 

Where search dimension is 2, search region is [-100，100]. 

2) Ronsenbrock Function 
1

2 2 2

2 1

1

( ) (100( ) ( 1) )
−

+

=

= − + −
n

i i i

i

f x x x x , 

Where search dimension is 10, search region is [-30,30]. 

3) Ackley Function 
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1 1

( ) 20exp( 0.2 ( ) / ) exp(( cos(2 )) / ) 20
= =

= − − − + + 
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i i

f x x n x n e , 

Where search dimension is 10, search region is [-30，30]. 

4) Griewank Function 

2

4

1 1

1
( ) cos( ) 1

4000 = =

= − + 
nn

i

i

i i

x
f x x

i
, 

Where search dimension is 10, search region is [-600, 600]. 

In order to analyze the performance of each algorithm, each algorithm runs 100 times, the maximum 
number of iterations is 2000, and the population size is 20. The specific parameters of each algorithm 
are as follows. 

For PSO, 1 2C = , 2 2C = , 0.8W = .For HS, the harmony memory library is 50HM = , harmony 

retention probability is 0.8HMCR = , fine-tuning probability is 0.5PAR = . For basic FPA, conversion 

probability is 0.8p = , the parameter of standard gamma function is 1.5 = . For IFPA, the number of 

iterations for gravity center reconstruction is 5=k , the compression ratio of search space is 0.5 = , 

the parameters of filled function are 0.01 = and 0.001 = . 

Table 1 shows the results of gravity center reconstruction for Sphere functions. And Tables 2, 3,4 and 
5 show the results of different algorithms for each function, where m is the average value of the 
optimal value obtained by 100 iterations, v is the variance and s are the number of successful searches. 

 

Table 1. Results of gravity center reconstruction for Sphere functions 

k  ( )M k  ( )Gx k  ( )O k  

1 100 
5.67 -44.33≤x1≤55.67 

1.01 -48.99≤x2≤51.01 

2 50 
-2.43 -27.43≤x1≤22.57 

0.64 -24.36≤x2≤25.64 

3 25 
0.02 -11.98≤x1≤12.02 

0.12 -11.88≤x2≤12.12 

4 12 
0.36 -5.64≤x1≤6.36 

-0.04 -5.04≤x2≤5.96 

5 6 
-0.09 -3.09≤x1≤2.91 

0.01 -2.99≤x2≤3.01 

 

Table 2. Results of Sphere functions 

Algorithms m v s 

PSO 0.1337 2.3392 65 

HS 0.0433 0.9437 72 

FPA 0.0474 1.3574 75 

IFPA 0 0 94 

 

Table 3. Results of Rosenbrock functions 

Algorithms m v s 

PSO 7.4637 9.3419 51 

HS 4.6308 5.2847 47 
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FPA 6.9534 3.3574 66 

IFPA 1.3274e-010 2.8734e-010 91 

 

Table 4. Results of Arckly functions 

Algorithms m v s 

PSO 0.8251 49.3652 11 

HS 0.0128 0.2039 43 

FPA 0.0302 0.7231 36 

IFPA 8.7921e-010 9.1672e-010 86 

 

Table 5. Results of Griewank functions 

Algorithms m v s 

PSO 0.1204 9.3423 8 

HS 5.3874e-004 3.7391e-3 23 

FPA 0.0956 7.0129 56 

IFPA 1.0347e-015 1.4892e-015 80 

 

From Table 1, the center of gravity reconstruction algorithm can compress the search space very well 
after several iterations. It means that the gravity center reconstruction can reduced the initial search 
space and greatly improve the initial local search ability of the algorithm. 

From Table 2-Table 5, the optimal average value and variance found by IFPA algorithm are better, 
and the success rate is higher than the other three algorithms. For complex multi-modal functions, the 
success rate of other algorithms is lower, but IFPA algorithm can still jump out of the local optimal 

solution more effectively. Therefore, IFPA algorithm is superior to the other three algorithms. 

6. Conclusion 

In this paper, the basic FPA is improved by Cauchy mutation and a hybrid barycenter reconstructed 
pollination algorithm (IFPA) is proposed. The gravity center reconstruction method is used to 

compress the optimization space of simplified function, reduce the search range of the algorithm. And 
then the Cauchy mutation is used for random perturbation of basic FPA to increase the diversity of 

the population, avoid the algorithm falling into local optimum, and improve the ability of global 
search. The simulation results show that the IFPA has good convergence speed and the ability to jump 

out of local optimum. 
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