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Abstract 

To analyze the influence of parameter uncertainty on structural reliability and solve the 

problem of penalty factor selection in penalty function, a hybrid reliability analysis method 

based on simulated annealing external penalty function method is proposed in this paper. 

Firstly, the reliability index is regarded as the objective function and the limit state equation is 

regarded as the equality constraint by using the optimization theory. Then the mathematical 

model of the reliability optimization design of the structure is established. Secondly, the 

simulated annealing external penalty function method is used to transform the constrained 

optimization problem into an unconstrained optimization problem. Considering the 

uncertainty of parameters, a probabilistic-interval mixed uncertainty model is established by 

using interval variables. Based on this, the relationship between parameter uncertainty and 

reliability index and the boundary value of reliable index of interval variable are studied in this 

paper. Numerical examples and engineering examples show that the simulated annealing 

external penalty function method has good convergence and high computational accuracy for 

certain nonlinear functions. The uncertainty of reliability parameters has a great influence on 

the reliability of structures. There is a positive correlation between the uncertainty of 

parameters and the uncertainty of reliability index. 
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1. Introduction 

In the practical engineering structure design, there are often various uncertainties such as material 
properties, manufacturing error, installation errors, and its own environment. Also, Recently, 

numerous research accomplishments of many advanced computational methods have been developed 

to sole the pratical engineering problems [1-4]，especially in the field of structural reliability. In 

order to improve the product performance and structural reliability [5], lots of advanced design and 

analysis methods based on uncertainty have attracted the attention of many researchers.There are 

great limitations in the reliability analysis methods which are applied to traditional probability models. 

They can only be performed with sufficient parameter samples and a strict probability distribution 

model. Therefore, it is difficult to calculate and analyze many uncertainties in practical engineering 

problems. When the parameter sample value itself has a certain fluctuation range and uncertainty, it 

is of great practical significance to study the structural hybrid reliability. Xiao et al. [6] proposed a 

structural reliability analysis method under mixed uncertainty. Aiming at the complex non-linear 
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relationship between variables and failure modes, the maximum and minimum failure probability of 

each failure mode can be calculated, and the structural reliability analysis is carried out by obtaining 

the corresponding optimization model; Jiang et al. [7] proposed an efficient probabilistic-evidence 
mixed reliability analysis method which aims at the mixed uncertainty problem of fuzzy variables 

and evidence variable structures, and this method greatly improves the calculation efficiency under 

the premise of ensuring accuracy. Meng et al. [8] proposed a new structural hybrid reliability analysis 

method based on dimensionality reduction algorithm, and the reliability of the structure is evaluated 

by obtaining the membership degree of the failure probability. Kang [9] proposed a reliability-based 

structural optimization design method by modeling the mixture of the probability and convex set of 

uncertain parameters. Li [10] proposed a dynamic structure reliability analysis method under the 

condition of mixed uncertain parameters. Considering the uncertainty of the parameters in the 

structural dynamic reliability analysis model, the corresponding dynamic reliability was calculated, 

and the influence of the parameter type on the dynamic reliability was analyzed; Wei et al. [11] 

proposed a core structure reliability analysis method of the hybrid machine based on the discrete 
element method. During the mixing process, the introduction of the discrete element method is 

feasible and operable, and can also ensure the safety and reliability of the institution. Jiang et al. [12] 

proposed a probability interval mixed uncertainty model and structural reliability analysis method 

considering correlation, and this method solved the mixed reliability analysis problem of correlation 

between variables. It is of great practical significance to be able to deal with the mixed reliability 

analysis problem with the correlation between variables. This method gives the interval of reliability 

index and the failure probability, and solves the case of variable correlation constraints in practical 

engineering problems. Meng et al. [13] proposed a structural hybrid reliability analysis method based 

on Taylor expansion method. For the mixed uncertainty problem of random variables and interval 

variables, the upper and lower bounds of the structural failure probability were calculated by Taylor 
expansion. The research on hybrid reliability methods has attracted the attention of many scholars at 

home and abroad. Adduri [14] proposed a method for analyzing the reliability limits of interval 

variable structure systems based on approximate joint function functions. Qiu et al. [15 combined 

classical probability theory and interval algorithms to study the structural reliability problems of 

probability interval structural systems. Wang et al. [16] proposed a reliability solution method for 

probability interval hybrid systems based on interval reliability models and probability calculations. 

Most of these methods mentioned above are aimed at simple linear problems. Considering the effects 

of various uncertainties in engineering practice, it is of great engineering significance to study and 

establish advanced methods to deal with mixed uncertainties. 

The external penalty function method is an earlier optimization method that can effectively solve 

constrained optimization problems. The basic idea is to transform it into a penalty function which 

contains an objective function according to the characteristics of the constraint conditions, so that the 

constraint optimization problem is transformed into a series of unconstrained optimization problems. 

However, this method has its own shortcomings. Only when the penalty factor approaches infinity, 

the optimal solution obtained by the external penalty function method can approach the optimal 

solution of the original problem. However, as the penalty factor approaches infinity, there is a certain 
possibility that the behavior of the penalty function will be deteriorated and it will result in low 

accuracy of the calculation result and inaccurate reliability. Therefore, other algorithms (such as 

FOSM method, SQP methodand MCS method) are more likely to be used to solve the constraint 

optimization problem. It can be found through research that the main reason for the low accuracy and 

reliability of the penalty function is that when the penalty factor approaches infinity, the condition 

number of the Hessen matrix of the penalty function will be deteriorated. Then the unconstrained 

algorithm based on gradients cannot get the optimal solution. The simulated annealing algorithm (SA) 

does not need any gradient information in the entire calculation process. Therefore, the deterioration 

of the condition number of the penalty function Hessen matrix does not affect its calculation. In 

addition, for the same reason, during the process of the entire calculation, there is no need to gradually 
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increase the penalty factor in order to approach the optimal solution. Instead, only a larger penalty 

factor needs to be taken directly, so that the selection of the penalty factor can be effectively solved. 

Based on this, this paper proposes a new hybrid reliability analysis method based on simulated 

annealing external penalty function. By introducing the uncertainty of parameters and combining the 

probability model [17] to study the problem of mixed uncertainty in practical applications, the 

reliability index of the function of the structure under a certain degree of uncertainty [18] is mainly 

studied. The convergence problem of the solution, the relationship between the parameter uncertainty 

and the reliable index in the practical engineering problem, and the problem of parameter selection 
corresponding to the upper and lower bounds of reliability index are studied. The test function and 

engineering examples are used to verify the stability and effectivity of the proposed method. 

2. Basic theory 

This section introduces the structural reliability mathematical model and optimization algorithm 

theory. We will improve it based on the external penalty function and apply it to the structural 

reliability analysis. 

2.1 Mathematical model of structural reliability 

1 2, , , nX X X  are n  independent random variables with arbitrary distributions. These independent 

random variables can constitute the structural limit state equation expressed as follows: 

1 2( , , , ) 0nZ g X X X= =
                                                    

）（1  

Using R F− (Lakovitz Fesley's method) to normalize the non-normal variable equivalents, we can get 

the equivalent normal mean '

xi , standard deviation '

xi and reliability indicators  : 

( ) ' 1 * */ ( )xi xi i xi iF x f X  −  = 
                                               

）（2  

'*1*' )]([ xiixiixi xFx  −−=
                                                

）（3  

2

* ' ' 1/2( ( ) / )i xi xiX   = − 
                                                 

）（4  

As the check point is unknown, it can use  as a function
1 2( , , , nP X X X ） of the points on the surface 

of the limit state, and the corresponding optimization method is used to obtain the minimum value  , 

and then the reliability index  and the check point * * * *

1 2( , , , nP X X X ） can be obtained. The reliability 

index solution is transformed into the following constraint optimization model: 
2

* ' ' 1/2( ( ) / )
n

i xi xi

i

X   = − 
                                                         

）（5  
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 ）（6  

If one variable ( )jX  in the limit state equation can be expressed by other variables as: 

'

1 2 1 1( , , , , , , ),j j j nX g X X X X X− +=
                                                  

）（7  

then the constraint optimization model ）（6 can be expressed as ）（8 : 

 
2
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= 

   = − + −    ，

                              

）（8  

2.2   Optimization algorithm 

2.2.1 The Simulated Annealing Algorithm 

The idea of Simulated Annealing (SA) was first proposed by Metropolis et al. in 1953. In 1983, 

Kirkpatrick first applied the simulated annealing algorithm to solve the optimization problems [18]. 

The simulated annealing algorithm is a stochastic optimization algorithm based on Monte Carlo 
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iterative solution strategy. It utilizes the common ground between the physical solid annealing process 

and the optimization problem, and its ultimate purpose is to provide an effective approximate solution 

algorithm for non-deterministic polynomial (NP) complexity problems. The algorithm can overcome 
the defect about easily falling into local minimum and the laziness of initial value. 

Simulated annealing is an optimization algorithm extended by the local search algorithm. It is 

different from the local search algorithm in that it selects a poor solution with a large target value in 

the field with a certain probability. In theory, it is a global optimal algorithm. The simulated annealing 

algorithm is based on the similarity between the solution process of the optimization problem and the 
annealing process of the physical system. The Metropolis algorithm is fully used to properly control 

the cooling process to achieve simulated annealing and then solve the global optimization problem. 

The basic principle of the simulated annealing algorithm is as follows: 

Firstly, given the initial temperature 0T  and initial point 0x , and then calculate the function value at 

that point
.

)( 0xf . 

Secondly, we randomly generate variables x , get the updated status xxx +=' , and calculate the 

function value under this status )'(xf and the difference )()'( xfxff −= . 

If 0f , use this state as the initial point of the next simulated annealing. 

If 0f , calculate the acceptance probability of the new state )/exp()( TffP −= , and generate a 

uniformly distributed pseudo-random number c  in the interval ]1,0[ . If cP  , this state is used as the 

initial point for the next simulated annealing; otherwise, the original state is used as the starting point 

without change. 

The above steps are the Metropolis process, and the temperature is reduced according to a certain 

annealing scheme, and the above process is repeated until the end criterion is reached. The algorithm 

can converge to the global best advantage or approximate the global best advantage. 

2.2.2 The optimized mathematical model of simulated annealing external penalty function method 

In this section, we will apply the simulated annealing algorithm to solve the structural reliability 

analysis. The sudden jump of the algorithm can effectively avoid the dilemma of local optimal 

solution. The combination of simulated annealing algorithm and external penalty function method 

can be used to solve the structural reliability analysis problem with certain nonlinearity. 

The external penalty function method can approximately convert a constrained optimization problem 

into an unconstrained optimization problem according to the type of constraints. In a general 

constrained optimization problem, the objective function is given as: 

),(min 21 nXXXf 
                                                              

）（9  

the restrictions are as follows: 

0),(s.t. 21i =nXXXh  },...,1{ lEi =                                                ）（10  

0),( 21 ni XXXg  },...,1{ mIi =                                               ）（11  

The feasibility range is given by: )}.(0)(),(0({ IiXgEiXhRXD ii

n == ） Then we construct a 

penalty function: 
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The following augmented objective function is obtained as: 
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Among them, }{ kM is a monotonically decreasing positive sequence, i.e., kMMM  21 . 

)(Xf  is an objective function without penalty term; )(XP  is a penalty function; kM is a penalty 

factor, and )(XPMk
 is a penalty term. For the points )(XP  that do not satisfy the constraint 

condition X , the penalty term 0)( XPM k
 decreases with kM  decreasing, which is a kind of 

punishment when the X  constraint conditions are not satisfied. When the 0)( =XPM k
 constraints 

are met, the penalty term indicates impunity. 

The steps of the hybrid algorithm combining the simulated annealing algorithm SA and the external 

penalty function method are as follows: 

For the structural optimization problem, the objective function is selected as the objective function 

with a penalty term. The method }{ kM is used to generate the decreasing kMrM *1k =+  sequence. 

The decreasing coefficient is given by ]1,0[r . The accuracy is given by 0 ,  and the  annealing 

factor is given by q . Take a larger number of initial penalty factors as 0M  and leave them unchanged. 

(Here we choose 810 eM = ， 96.0=r ， 6-1e= ， 1=q ) 

Arbitrarily select an initial solution (initial state) ）（0X order 0=k , ）（0)( XX k = and maxTTk = (initial 

annealing temperature) calculated ),( )(

k

k MXF values. 

Do the following cycle at temperature kT . 

 
Fig. 1 Flow chart of the algorithm 

Generate a new state randomly )(' ）（kXgeneteX =  (candidate solution) at the current temperature kT ; 



International Journal of Science Vol.7 No.1 2020                                                             ISSN: 1813-4890 

 

247 

 

Calculate the augmented objective function value ),( )(

k

k MXF and ),(),'( )(

k

k

k MXFMXFF −= ; 

If 0F , so ')( XX k = , go to 4), otherwise go to the next step; 

If the condition )1,0()}/exp(,1min{ randomTF k −  is satisfied, then go to 4), otherwise go to the step 

a.（Metropolis); 

If the convergence accuracy of the algorithm is satisfied or the upper limit of the number of iteration 

steps is reached, go to 5); Otherwise, the annealing temperature of the next cycle is obtained by 

)(1 kk TupdatT =+  and 1+= kk ,  go to 3). (Herein we take ]1,0[,1 =+  kk TT  and use the exponential 

cooling method to update the temperature) 

Output the final calculation result, '* XX = and ),'(),( )(

kk

k MXFMXF = take the sum. 

In this paper, a hybrid algorithm combining the simulated annealing algorithm and the external 

penalty function method is used to give the corresponding functional equation and the distribution 

profile of its variables. According to the above optimization theory, the reliability can be obtained by 

combining the formula  and the formula *x . The reliability index can be iteratively obtained by the 

simulated annealing external penalty function method. The flowchart of the proposed method is 

shown in Fig. 1. 

3. Reliability analysis  

3.1 Numerical example  

The function expression of structure of the structure is given as： 
2 2 2

1 1 2 25000g x y x y= −  −                                                           
）（14  

In Eq. (14), the distribution types of variables 1x
, 2x

, 1y
, 2y

 are normally distributed and the variables 

are independent each other. The three parameters of random variables are listed below, calculated 

and analyzed. 

（1)We consider the uncertainty of the mean value of variables X and Y  10%. At this time, the 

parameter values are shown in Table 1. 
Table 1 The value of each random variable distribution parameter 

Random Variables Mean( ) variance( ) Distribution type 

1x
 [3.6,4.4] 0.6 Normal 

2x
 [4.5,5.5] 0.5 Normal 

1y
 [36,44] 2.5 Normal 

2y
 [9,11] 0.8 Normal 

For the above parameters, the upper and lower bounds of the reliability index are calculated and 

analyzed.The cumulative probability function of normal distribution : 
1 1

,
2 2 2

x
cdf erf





− 
= +  

 
                                                                  ）（15  

in which, define domain： x R  and the parameter range is given by： R  ， 2 0  。 

1)By the partial derivation of parameters
 ： 

2
1

exp
2 2

cdf x 

  

  − 
= − −  

    
                                                           ）（16  

According to the variable interval of this example, we can get 0
cdf







. Therefore, the cumulative 

probability function decreases monotonically to the parameter  . 
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2)Through the partial derivation of the parameters , we can get: 
2

2
exp

2 2

cdf x x 

  

  − − 
= − −  

    
                                                   ）（17  

It can be seen from the above formula ）（17  that the positive and negative of 
cdf






 depends on the 

size relationship with
cdf






: 

If x  , 0x −  , then 0
cdf







, and the cumulative probability distribution function increases with 

  monotonically; 

If x  , 0x −  , then 0
cdf







, and the cumulative probability distribution function decreases with 

 monotonically; 

When we choose x = ,  no matter what value   is taken, the cumulative probability distribution 

function value is 0.5. According to the monotonicity analysis above, the lower limit of reliability 

index min  will be reached at the upper limit of mean interval, and the upper limit of reliability index 

max  will be reached at the lower limit of mean interval. The results are in good agreement with the 

analysis of the monotonicity. Using the proposed method in this paper, the improved first order 

second moment method and Monte Carlo iterative calculation, the reliability index calculation results 

and failure probability solution data are obtained as Table 2. The corresponding reliability index 

iteration diagram is obtained by the proposed method in 50 steps, as shown in Fig. 2 and Fig. 3. 

 

Table 2 The calculation result of reliability index and failure probability  

Method Method of this article FOSM Monte Carlo 

Reliable indicator 
interval 

[0.5344, 4.0334] [0.5291, 4.0264] [0.5335, 4.0326] 

Failure probability 

interval 

[
5-10748.2  , 

0.2966] 
[ 5-108323.2  ,0.2984] 

[ 5-107585.2  , 

0.2968] 

     

     
Fig. 2 The iteration of lower bound of reliability index 
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Fig. 3 The iteration of upper bound of reliability index 

The calculation results in Table 2, Fig. 2 and Fig. 3 show: 

(1) In the case of considering the uncertainty of the mean of the variables, the proposed method in 

this paper can obtain the reliable index min and
max in 50 steps. The corresponding structural failure 

probability are 2966.0=fP and 5-10748.2 =fP , respectively. The calculation results above are 

consistent with the general rule that the larger the reliability index  , the smaller the failure 

probability fP . 

(2) The calculation results using the improved first-order second-moment method (FOSM) also 

basically accord with the above rules. The Monte Carlo method is also adopted for the verification. 

When the number of samplings is N = 106, the calculation of the structural reliability index is also in 

line with the above law. 

(3) It can be known from the calculation results of the above three methods that the fluctuation of the 

distribution parameters has a greater influence on the reliability probability or failure probability of 

the structural members; the failure probability fluctuates in a large range, but is relatively small, and 

the reliability of the structure is high. 

(4) The method in this paper finds that the reliable index converges quickly in the first 10 iterations, 

but converges slowly in the next 40 iterations. 

Considering the uncertainty of the mean X  and Y of the sum of variables, the reliable index is 

calculated by the method in this paper. The reliable index interval and its uncertainty are shown in 

Table 3. The relationship between the mean uncertainty and the uncertainty of the reliable index is 

shown in Fig. 4. 

Table 3 The computational results of reliable indicators under mean uncertainty 

Mean uncertainty Reliable indicator interval   
  

uncertainty 

2% [1.9565,2.8437] 18% 

4% [1.6162,3.0856] 31% 

6% [1.2859,3.3611] 45% 

8% [0.9019,3.6857] 61% 

10% [0.5351,4.033] 77% 

12% [0.1838,4.4254] 92% 
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Fig. 4 The relationship between the mean uncertainty and the uncertainty of reliable Index 

(1) From Table 4 and Fig. 4, it can be known that as the uncertainty of the mean value increases, the 

uncertainty of the reliable index also increases, and it shows a proportional relationship between them. 

(2) Considering the uncertainty of the standard deviation X  and Y  of the variables, the reliable index 

is calculated by the proposed method in this paper. The reliable index interval and its uncertainty are 

shown in Table 4. The relationship between the standard deviation uncertainty and the uncertainty of 

the reliable index is shown in Fig. 5.  

Table 4 The computational results of reliable indicators under standard deviation uncertainty 

Standard deviation uncertainty Reliable indicator interval   
  

uncertainty 

5% [2.1907,2.4617] 5% 

10% [2.1451,2.6333] 10% 

15% [2.1073,2.7390] 13% 

20% [1.9543,2.8797] 19% 

25% [1.8579,3.0693] 25% 

30% [1.7899,3.2813] 29% 

 

 
Fig. 5 The relationship between Uncertainty of Standard Deviation and Uncertainty of Reliable 

Index 

Table 5 and Fig. 5 show that as the uncertainty of the standard deviation doubles, the uncertainty of 

reliable indicators also increases, and it also shows a proportional relationship. 

3)At the same time, the mean uncertainty of the variables X  and the uncertainty of the standard 

deviation Y of the variables are considered. The reliable index is calculated by the proposed method 
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in this paper. The reliable index interval and its uncertainty are shown in Table 5. The relationship of 

index uncertainty is shown in Fig. 6. 

Table 5 The computational results of reliable indicators under the uncertainty of mean and standard 
deviation  

Parameter 

uncertainty 1  2  3  4  

Reliable 
indicator 

interval


 

  
uncertainty 

3% [3.88,4.12] [4.85,5.15] [2.425,2.575] [0.776,0.824] [2.1715,2.6293] 10% 

6% [3.76,4.24] [4.7,5.3] [2.35,2.65] [0.752,0.848] [1.7960,2.9441] 24% 

9% [3.64,4.36] [4.55,5.45] [2.275,2.725] [0.728,0.872] [1.4777,3.2373] 37% 

12% [3.52,4.48] [4.4,5.6] [2.2,2.8] [0.704,0.896] [1.2218,3.5555] 49% 

15% [3.4,4.6] [4.25,5.75] [2.125,2.875] [0.68,0.92] [0.9298,3.9225] 61% 

18% [3.28,4.72] [4.1,5.9] [2.05,2.95] [0.656,0.944] [0.6694,4.2472] 73% 

 

 
Fig. 6 The relationship between mean and standard deviation uncertainty and reliability index 

uncertainty 

Table 5 and Fig. 6 show that as the uncertainty of the mean and standard deviation doubles, the 

uncertainty of the reliable indicator also increases, and it also shows a proportional relationship. 

3.2 The cantilever beam problem 

The structure of a cantilever beam is shown in Fig. 7. The length of the beam is L  and the cross-

sectional dimensions are t  and h . The top of the cantilever beam is acted by the horizontal 
xP  and 

vertical forces 
yP  which are shown in Fig.7. The maximum stress at the fixed end of the cantilever 

beam cannot exceed the yield strength limit value S . The difference between the allowable stress of 

the material and the maximum stress of the fixed end of the cantilever beam is selected as the 

structural function, and then the limit state equation of cantilever beam is obtained as  

22

66

th

LP

ht

LP
SG

yx −−= ,                                                              ）（18  

in which MPaSmL 3201 == ， . 

 
Fig. 7 The Cantilever beam 

The important parameters t  and h  , the horizontal 
xP  and vertical forces 

yP  of the cantilever beam 

are selected as random variables, and they are independent each other. The specific random variable 

distribution parameters are shown in Table 6. 
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Table 6 The value of each random variable distribution parameter 

Random Variables Mean Standard deviation Distribution type 

t (m) 0.1 0.01 Normal 

h (m) 0.2 0.015 Normal 

)10( 4 NPx  5 0.625 Normal 

)10( 4 NPy  2.5 0.15 Normal 

Let tx =1
, hx =2

,
xPx =3
, yPx =4  then the formula ）（18 will become: 

2

21

4

2

2

1

3 66
32000)(

xx

x

xx

x
xG −−=

                                                              

）（19  

For the values in Table 6, we will consider the mean uncertainty of the variables t  and h  as well as 

the uncertainty of the standard deviation of 
xP  and 

yP  at the same time. The reliability index is 

calculated by the proposed method in this paper. The obtained reliability index interval and its 

uncertainty degree are shown in Table 7, and the relationship between the uncertainty of mean value 

and standard deviation and the uncertainty of reliability index is shown in Fig. 8. 

Table 7 The computational results of reliability index under the uncertainty of the mean and 

standard deviation 

Parameter 
uncertainty 

t  
h  
 

xp
 yp

 
Reliable index


 


 

uncertainty 

2% [0.098,0.102] [0.196,0.204] [0.6125,0.6325] [0.147,0.153] [1.9964,2.6342] 13.77% 

4% [0.096,0.104] [0.192,0.208] [0.6,0.65] [0.144,0.156] [1.7165,2.7987] 23.97% 

6% [0.094,0.106] [0.188,0.212] [0.5875,0.6625] [0.141,0.159] [1.4399,3.0362] 35.66% 

8% [0.092,0.108] [0.184,0.216] [0.575,0.675] [0.138,0.162] [1.1690,3.3208] 47.93% 

10% [0.09,0.11] [0.18,0.22] [0.5625,0.6875] [0.135,0.165] [0.8946,3.5952] 60.15% 

12% [0.088,0.112] [0.176,0.224] [0.55,0.7] [0.132,0.168] [0.6118,3.8231] 72.41% 

 

 
Fig. 8 The relationship between the uncertainty of mean and standard deviation and reliability index 

uncertainty 

From Table 7 and Fig. 8, it can be known that when the uncertainty of the mean and standard deviation 

is 2%, the uncertainty of the reliability index of the cantilever beam structure is 13.77%. With the 

doubling of the uncertainty of the mean and the standard deviation, the uncertainty of the reliable 

index also increases, and it shows a proportional relationship. It also indicates that the parameter 
uncertainty has a certain effect on the structure reliability. 
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4. Conclusion 

This paper proposes a new structural reliability analysis method based on the simulated annealing 

algorithm and the external penalty function method. Also, we can draw the following conclusions: 

1)Taking into account the uncertainty of the structural parameters, the proposed method in this paper 

exploits the external penalty function method deal with the constraint conditions, and the simulated 

annealing method is used to solve the structural reliability analysis problem. 

2)The proposed method in this paper can be used to solve the reliability analysis of limit state equation 

with a certain degree of nonlinearity, the existence of parameter uncertainties and the mixed reliability 
model of interval variables. The results of numerical examples show that for the limit state equation 

with a high degree of non-linearity, the simulated annealing external penalty function method can 

still obtain more accurate and reliable indicators. 

3)Numerical results of numerical examples and engineering examples show that parameter 

uncertainty has a greater impact on the reliability, and there is a positive correlation between the 

parameter uncertainty and the reliability index uncertainty. In the future research and development, 

the proposed method in this paper can be extended to the future research considering the influence of 

the uncertainty with different parameter types and multiple distribution types on the structural 

reliability. 
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