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Abstract 

In this paper we consider linear ill-posed problems in a Hilbert space setting where instead of 

exact data y noisy data y X  is give satisfying  y y     with known noise level  . 

Assuming the unknown solution belongs to some general source set M  we propose a class of 

regularization methods that lead to optimal error bounds on the setM toward the minimal-

norm, least-squares solution of an ill-posed linear operator equation in the presence of noisy 

data. Our results cover the special case of finitely smoothing operators A and extend recent 

results for infinitely smoothing operators. In addition, we generalize our results to the method 

of iterative regularization of order m . 
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1. Introduction 

Many works have been done for regularization of linear ill-posed problems [1-6]. We are concerned 

with the problem of determining solutions †x  for the linear ill-posed problems 

  ,Ax y y R A                                                 (1) 

where A  is a bounded non-negative, self-adjoint and injective operator on a Hilbert space   and

 y R A , the range of A . This problem is in general ill-posed in the sense that even if a unique 

solution for (1) exists, the solution may not depend continuously on the data y . This situation occurs 

if  R A  is not closed. For each 0  , lety X  such that 

y-y                                                             (2) 

and known noise level . 

The problem of solving (1) is, in general, ill-posed. By ill-posedness, we always mean that the 

solutions do not depend continuously on the data. In the case of multiple solutions this is understood 

in the sense of multivalued mappings. To cope with the ill-posedness, problem (1) has to be 
regularized. A well-known and effective technique is Tikhonov regularization. In this method a 

solution of problem (1) is approximated by a solution of the minimization problem [7-8] 

 
2 2

min
x X

Ax y x 


                                                 (3) 

where   
is regarded as the regularized parameter, x 


is the Tikhonov regularization solution. 
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In the case of non-negative and self-adjoint operators A  the least squares minimization in problem 

(3), equivalently 

A Ax x A y                                                       (4) 

can be replaced by the general regularized equation 

 x q A y 


                                                        (5) 

This method we consider to compute the regularized approximation x 


by solving (5) is toextend 

some results from the results [9-13]. 

This paper is organized as follows. In Section 2 we make preliminary work for the approximate 

solution of problem (1) with data y  . In Section 3 and 4 we prove that the regularization method we 

propose is quasi-order optimal on some general source set M  provided the regularization parameter 
is chosen either a priori or a posteriori by the rule of Engl. In Section 5 we generalize our results to 

the proposed method of iterative regularization of order m . 

2. Optimality and quasi-order optimality 

For the stable approximate solution of problem (1) some regularization technique has to be applied, 

which provides regularized approximations x R y  

 
 with the property  

†x x


 as 0 

where the regularization parameter  = ，y   has to be chosen properly. Hence, 

regularizedapproximationsx 


depend continuously on the data [14-18]. 

In order to guarantee certain convergence rates for †-x x


, the set of solutions of problem (1) has to 

be restricted to certain source sets. In this paper we are interested in quasi-order optimality results 

under general source conditions of the type †

,E
x M


 with 

  ,
,

E
M x X x A E


     
                                

(6) 

and source functions satisfying 

Assumption A1.   ：0， 0,a    with A a is continuous and possesses the following 

properties: 

(i)  is strictly monotonically increasing on 0，a  with  
0

lim 0


 


 . 

(ii) Thefunction     2 2 2g：0， 0,a a a  
, implicitly defined by     2 2 2g =     , 

isconvex. 

In (6), the operator function is defined via spectral representation: 

     
0
=
a

A dE A a


                                           (7) 

where 
0
=
a

A dE


  
is the spectral representation and  

0 a
E
  

the spectral family of A . We may 

observe that, since A  is assumed to be self-adjoint and non-negative,   0,A a     , where  A denotes 

the spectrum of the operator A . 

It is well-known that any operator :R X X  can be considered as a special method for solving 

linear ill-posed problems such as (1). Then the approximate solution is given byRy 
. Let us consider 
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the worst case error  ,R for identifying the solution †x of problem (1) fromy X  satisfying (2) 

and †

,E
x M


 which is defined by 

   † †

,
, sup , ,

E
R Ry x x M y X y y  


                      (8) 

This worst case error characterizes the maximal error of the method R  if the solution †x of problem 

(1) varies in the set 
,E

M


. An optimal method 
opt
R  is characterized by    , = inf ,

opt R
R R   . It 

can easily be realized that    ,inf , ,
E

R
R M


     

with 

   , ,
, sup ,

E E
M x x M Ax
 

                                     (9) 

 

For estimating the modulus of continuity  ,,
E

M


  of the inverse operator 1A on the source set 
,E

M


, 

we introduce the function    : 0, 0,a a a    
, defined implicitly by     =     , 

or explicitly by 

   -1=                                                      (10) 

Lemma 2.1.  Let 
,E

M


be given by (6) and let Assumption A1 be satisfied. If is sufficiently small 

such that  a a
E


  , then 

  1

,
,

E
M E

E


     

  
 

                                            (11) 

with  given by (10). If   A A
E


  , then there holds the equality in (11). 

Proof. From (6) and (9) we have 

      ,
, sup ,

E
M A A A E


                            (12) 

Substituting  A E   provides 

     
1

,
, sup , 1

E
M E A A A

E


      

 
     

 
            (13) 

Now choose ω in the range of  A  such that the side conditions A
E


   and  

1

1A 


   

of (13) are satisfied. Since the function g of Assumption A1(ii) is convex, by exploiting Jensens 
inequality we obtain 
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2
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0

2
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1
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a

a

a

d E
g g

d EA

g d E

d E

A

A









    

  

    

  



 











           
          

 
 


 
 



 
 








                        (14) 

We exploit the side condition  
1

1A 


   
, and take into consideration that the function 

defined in Assumption A1 (ii) possesses the explicit form 

   
2

1g     
  

                                            (15) 

exploit the monotonicity of -1 as well as inequality (14) and obtain 

 
 

 

 

2

2
-1 -1

1

2
1

2

2 2
1

2

2

A

A
g

A

A


  

 

  

  











  
  

      
   

    

 
    

 
 
    



                                (16) 

This inequality attains the form   A   , giving  1 A   , where   is defined by 

(9). Due to the monotonicity of -1  and the assumption  a a
E


 , we obtain

 -1 -1A
E


   

 
   

 
. From this estimate and (13) we obtain (11). 

In the second part we prove that in (11) equality holds provided  A A
E


  . Assume that

E


 is an 

eigenvalue of the operator  A A and 
0

 is a corresponding eigenvectorwith 
0
=E . Then 

  0 0
A A

E


    , consequently,   0

A A   . Hence, in view of (12) we conclude that 

   , 0
,

E
M A


    .  



International Journal of Science Vol.7 No.1 2020                                                             ISSN: 1813-4890 

 

311 

 

From     0 0 0
A A A

E


       we obtain   1

0 0
A

E


     

  
 

, consequently,

  1

,
,

E
M E

E


     

  
 

. Hence, due to (11) we have 

  1

,
,

E
M E

E


     

  
 

                                              (17) 

If   A A
E


  is not an eigenvalue, then

E


belongs to the approximate eigenspectrum of  A A

as  A A  is self-adjoint, and in that case, the proof of (17) followswith small modifications [19-22]. 

For the proof of Lemma 2.1 in the case of compact operators A  see the reference (e.g. Ivanov et al., 
1969) . Our proof is based on the proof of Lemma 2.1 in the reference (e.g. Tautenhahn, 1998) and it 

is more general since the operator A  is not necessarily compact. Note that estimate (11) can also be 

given in terms of the function g  defined in Assumption A1(ii) and possessesthe equivalent form

 
2

1

, 2
,

E
M E g

E


  

 
  

 
. 

Due to Lemma 2.1 the following definition makes sense. 

Definition2.2. Let Assumption A1 be satisfied and  be given by(10). Then, anyregularization method 

R 


, or any regularized approximation x R y  

 
 for for problem (1),(2) is called 

(i) optimal on the set
,E

M


 if † 1x x E
E






   

   
 

. 

(ii) quasi-order optimal on the set
,E

M


if † 1x x cE
E






   

   
 

, where c  is dependent of and . 

3. A priori parameter choice 

It is well known that in Lavrentiev regularization method the regularized approximation R 


can be 

represented in the following form 

 
1

= +x A I y 






                                                  (18) 

In this section we consider the general form    = ,x q A y q A y  

 
  , which is a generalization 

to the Larrentiev regularization approximation. 

AssumptionA2.    ：0, 0, ,q A R A a


      
is continuous and possesses 

thefollowing properties: 

(i)  0< 1q


   for 0  and all 0, A  
. 

(ii) There exists   0c    such that    2q c


     , where 0, A  
, and  c  is 

strictlymonotonically on  0, . 

(iii)  
0

1
lim
a
q





  for 0，A   . 

We use the following notations for convenience: 
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   = ,x q A y q A y
 

                                            (19) 

   = ,x q A y q A y  

 
                                         (20) 

which is the regularized approximation with exact data, the available noisy data, respectively. 

Theorem 3.1. Let 
,E

M


 be given by (6), †

,E
x M


 , and Assumption A1, A2 be satisfied and let  be 

given by (10). Let x


 be the regularized approximation defined in (19) and let  be chosen a priori 

by 

1 1 1=c
E


    

   
    

   

                                            (21) 

 If the function   is concave, then 

† 1x x E
E


   

   
 

                                             (22) 

Proof. Since  
0

lim =0


 


 and is concave we have    t t    for 0,1t     . Choosing

 =t q


  and exploiting the monotonicity of  provides 

          1- 1-q q c
 

           
 

                 (23) 

Let us use the notation  B I q A A
 
  . Then, the regularization error can be expressed by 

  

    

  

† †

sup 1

x x I q A A x

E q

E c

 


   

 

  

 



                            (24) 

For the regularization parameter   chosen by (21) there holds    1c
E


     

  
 

, consequently, 

(22) follows from (24). 

Theorem 3.2.Let 
,E

M


 be given by (6), †

,E
x M


 , and Assumption A1, A2 be satisfiedand let   be 

given by (10). Let x 


 be the regularized approximation defined in (20) and let be chosen a priori 

by (21). If the function   is concave, then 

† 12x x E
E






   

   
 

                                          (25) 

Proof. Due to    1     we obtain for
1

E


    

  
 

the equation

1 1 1

E E E

  
    

    
     

    
. Hence, for chosen by (21) we obtain 

  1c
E E

 
    

  
 

                                                (26) 

Let x


be given by (19). Then, Exploiting (25) and Assumption A2, we obtain 
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1x x q A y y E
Ec

 

  

 




  
      

 
                  (27) 

Now using the property of the triangle inequality (22) and (27), then holds the assertion. 

4. A posteriori parameter choice 

In Section 3 we have proved that the proposed regularization method provides quasi-order optimal 

error bounds (25) on the general set
,E

M


given by (6) provided the regularizationparameter is chosen 

a priori according to formula (21). Unfortunately, this a priori parameter choice requires the 
knowledge of the function  , which is generally unknown. One prominent a posteriori rule for 

choosing α which does not require to know the function   is Morozovs discrepancy principle (e.g. 

Morozov, 1966; Nair, 1999) in which  is chosen as the solution of the nonlinear scalar equation 

Ax y C 


   with some constant 1C  . Although Morozovss discrepancy principle works 

well for the method of Tikhonov regularization (3), it appears to be divergent for the method of 
Lavrentiev regularization. 

In this section we discuss the rule of Engl for choosing the regularization parameter. This posteriori 

rule does not require to know the function  which characterizes the set 
,E

M


 given by (6). This rule 

reads as follows: 

Rule of Engl. For each , 0, 0p q   , and y  fulfilling (2), there is a unique 0  such that 

 

  :
p

q
d Ax y 







                                           (28) 

In our first proposition, we estimate the regularization error †x x

 wherex


 is the regularized 

approximation with exact data, that is, x


is given by (19). 

 

Proposition 4.1. Let †

,E
x M


  with 

,E
M


 given by (6), Assumption A1, A2 be satisfied and let   be 

given by (10). Let x


 the regularized approximation defined in (19) and let   be chosen by rule (28). 

If the function   is concave, then 

1
† 1+1

p

q
x x E

E

 







   
     

                                      

(29) 

Proof. Notice that  is a concave function with  
0

lim 0


 


  we have

    0,1t t t         .  

We multiply by  2 2t    and obtain 

      
2

2 2 -1 4 2 2 0,1t t t t              
                    (30) 

Therefore, we obtain     2 2 4 2 2g t t     .  

Choosing  1t q


    yields 

         
2 4

2 2 21 1g q q
 

           
                     

(31) 
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Let be the regularization parameter chosen by rule (28).  

Notice     d I Aq A y 


  
 
we obtain 

          
p

q

I Aq A y I Aq A y I Aq A y y 

  






     

 
  

(32) 

Recall that since  † †

,
,
E

x M x A


    for some X  with E  , so that we obtain 

       †I Aq A x I Aq A A
 

    .  

Using Assumption A1, A2 as well as (31) and (32), we obtain 

       

     

    

  

2 2 2† 2

0

2 2

0

2 2
2

0

2

0

4 2
2 2

0

2

0

2
2

†

2

2

1

1

1

a

a

a

a

a

a

p

q

I Aq A x q d E
g g

d E

g q d E

d E

q d E

d E

I Aq A Ax

  



 



 





    

 

    



     












          
  
  




























             (33) 

Exploiting the monotonicity of -1 as well as (15) and (33) we obtain 

     

  

  

  

  

2

2
† †

-1 -1

1

2
2 †

2 2
†

2

2

2 2
†

2

2
†

1

=

p

q

p

q

p

q

I Aq A x I Aq A x

E

I Aq A x
g

I Aq A x

I Aq A x

I Aq A x

 









 











 










  
      
     
      
             

 
 

 
 
 

 
 

 



 
 

 

          (34) 
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By virtue of the definition of  according to    -1=    , which together with the above 

estimate gives  

   †

1

1
p

q

I Aq A x

E
E

 








 
 
  
  
   

  

.                                          

 

(35) 

Exploiting this estimate and the identity   † †=x x I q A A x
 
  , we obtain (29). 

Proposition 4.2.Let 
,E

M


 be given by (6), †

,E
x M


 , and Assumption A1, A2 be satisfied and let 

be given by (10). Let   be chosen by rule (28). If the function   is concave, then 

    
1

-1
p

q
Ec c


   



 
 

                                       

(36) 

Proof. Exploiting the rule (28) we obtain 

     =
p

q
I Aq A y I Aq A y

 





   

                     
(37) 

Using the estimate as well as Assumption A2 and  

   1 q c


     
                                                (38) 

we obtain 

          †- =
p

q
I Aq A y I Aq A Ax Ec c

 


   


   

     
(39) 

Now the assertion can be proved easily. 

Theorem 4.3. Let †

,E
x M


 with 

,E
M


 given by (6), let Assumption A1, A2 be satisfied and let   be 

given by (10). Letx 


 the regularized approximation defined in (19) and let   be chosen by rule (28). 

If the function  is concave, then x 


 is quasi-order optimal on the set 
,E

M


. In fact, 

† 1

0
x x c E

E





   

   
                                            

(40) 

with 

 

2 2 2

0 1

p q

q p q
c

 

  









for 

1

1 2
p

q







 
                              

(41) 

and 
1

0

3p q

q
c

 



 
  for 

1

2
p

q








                                     

(42) 

Proof. By (34) and the monotonicity of   there holds 

 
 

1
-1 -1

p

q
c

Ec

 
 



  
  

                                      

(43) 

Exploiting    -1=     we conclude that 

 

1 1

-1 -1
p p

q q EEc

   


 

     
    

                                        

(44) 
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Using the monotonicity of -1 , we can conclude that 

 
-1

1-

q

p q

E

Ec

  


  

 
  

 
for 

1

1 2
p

q







 
                           

(45) 

In the case 
1

2
p

q







 , we use the monotonicity of -1  and obtain from (36) the estimate 

 
 -1 c

Ec


 



 
 

 
                                              

 
(46) 

and instead of (37) the estimate 

 
1E
Ec

 




  
  

 
 for 

1

2
p

q








                                   

(47) 

Using Assumption A2 as well as (19) and (20) we obtain 

 
2

x x
c



 




 

                                               

(48) 

Therefore, by virtue of (37) and (38), 

1x x cE
E



 


   

   
                                            

(49) 

with 

1

2 q

p q
c



 



 for 

1

1 2
p

q







 
                                      

(50) 

and 

2c   for 
1

2
p

q








                                             

(51) 

Now the quasi-order optimal error bound (35) follows from (29) and (39). 

5. Iterated regularization 

In this section we are going to generalize our results of Sections 3 and 4 for the method ofproposed 

method for iterated regularization.Starting with
,0

0x 


 , in this method the regularized 

approximation
,

:
m

x x 

 
 is defined recursively by solving the m operator equations 

     , , 1
1,2, ,

k k
x q A y x k m  

  



  

                  
(52) 

In the case of exact data y , we define
,

:
m

x x
 

  recursively by solving the m operator equations 

     , , 1
1,2, ,

k k
x q A y x k m
  




  
                  

(53) 

Now we conclude that  x g A y 

 
  and  x g A y

 
 where 

 
 

 
    1 0

1

mq
g q A

q


 




   

 

    
  

              

(54) 

Theorem 5.1. Let 
,E

M


 given by (6), †

,E
x M


 , Assumption A1, A2 be satisfied and let   be given 

by (10). Let
,

:
m

x x 

 
  the regularized approximation defined in (40) and let  chosen a priori by 

(20). If the function   is concave, then 
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 † 11x x m E
E






   

    
                                      

(55) 

Proof. Let us use the notations. 

      
 

( )
m

I A q A q A A q A
D

I q A

  





 



  



                        

(56) 

 
      

 

1 ( )

1

m

q q q
r

q

  





      


 

  



                       

(57) 

Since the function   is concave , we have 

   t t     for 0 1t                                         (58) 

We use this inequality with 

 
 

1 ( )

1

q
t

q




  

 

 



                                              

(59) 

exploit the representation
† †- =x x D x

 
and obtain due to †

,E
x M


 , Assumption A2 and the 

monotonicity of  that 

   



 
 

 

 
 

  

†

0,

- sup

1 ( )
sup

1

1 ( )

1

a

x x E r

q

q

q
E

q

E c

 










  

  
 

 

  
 

 

 

 



 




  
  

  


                               

(60)

           

 

We may conclude that    - =x x q A y y 

  
 with g


as in (42). Since 

 
 

 
  

 
 

  

 

 

1
1

1 1- 1
1

mq
g q

q

q
m q

q

mq

m

c



 












  

 


 

 





  
  

   
 





                             

(61) 

We can obtain 

 
x x m

c


 




 

                                                

(62) 

For  chosen according to (21) we obtain 

   -1=c
E


  

 
 
                                                

(63) 



International Journal of Science Vol.7 No.1 2020                                                             ISSN: 1813-4890 

 

318 

 

and 

 
1=E
Ec

 




  
 
                                                   

(64) 

Then by using (44) and (45) we derive the assertion. 

Theorem 5.2. Let 
,E

M


 given by (6), †

,E
x M


 , Assumption A1, A2 be satisfied and let  be given 

by (10).Let
,

:
m

x x 

 
 the regularized approximation defined in (40) and let bechosen by rule (28). 

If the function   is concave, then 

† 1

0
x x c E

E





   

   
                                            

(65) 

with 

 

 

2 2 2

0 1

1p q

q p q

m
c

 

  





 



 for 

1

1 2
p

q







 
                              

(66) 

and 

 1 2

0

1p q

q

m
c

 



  
  for 

1

2
p

q








                                  

(67) 

Proof. By virtue of y Ax D y  

 
  ,the function d in (28) can be written in theequivalent form 

 d D y 


   

Therefore, for   chosen by rule (28) we have 

 +
p

q
D y D y D y y 

  





   

                          
(68) 

Exploiting (47), we obtain in analogy to the proof of Proposition 4.1 that   chosen by rule (28) we 

obtain 

1
† 1+1

p

q
x x E

E

 







   
     

                                      

(69) 

Now we follow the proof of Proposition 4.2 and obtain the relation (34) in this case as well. Finally 

we follow the proof of Theorem 4.3 and obtain the quasi-order optimal error bound (46). 
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