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Abstract 

This paper studies the rigidity of the Poisson diffeomorphisms on some Poisson manifolds. 

Consider a sequence of Poisson diffeomorphisms, if the sequence converges in different 

topology, the property of the limit of this sequence is studied. Using the Poisson capacity method 

and symplectic leaf structure, we show the 𝑪𝟏 closed theorem and 𝑪𝟎 closed results in some 

conditions. 
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1. Introduction 

We mainly consider the rigidity of the Poisson diffeomorphisms on the Poisson manifold in this paper. 

The group of diffeomorphisms is very important in the studying of symplectic and Poisson manifold, 

it establishes a bridge between geometry and dynamical systems. In symplectic geometry, the rigidity 

of symplectic diffeomorphisms is investigated deeply. By the definition of symplectic 

diffeomorphisms, if the sequence of symplectic diffeomorphisms converges in 𝐶1topology, then the 

limit map is also a symplectic diffeomorphism. Suppose that the sequence of symplectic 

diffeomorphisms converges locally uniformly to a map, if the limit map is differentiable at the origin, 

then the differential of the map is symplectic. Symplectic diffeomorphism is volume preserving, but 

in 𝐶0sense, a volume preserving map generally may not be approximated by symplectic maps [2, 5]. 

So the rigidity of the symplectic diffeomorphism in 𝐶0 sense becomes an interesting question. 

Eliashberg, Gromov, Ekeland, Hofer and other people made great contributions to this area [2, 3, 4, 

5]. Eliashberg, Gromov proved the following results [3, 4, 5]: 

Theorem 1. The group of symplectic diffeomorphisms of a compact symplectic manifold is 𝐶0closed 

in the group of all diffeomorphisms. 

Furthermore, consider the group of symplectic diffeomorphisms under the locally uniform limits, the 

following results hold: 

Theorem 2[5]. Assume ℎ𝑗 : ℝ
2𝑛 →ℝ2𝑛 is a sequence of homeomorphisms satisfying 

𝑐(ℎ𝑗(𝐸)) = 𝑐(𝐸)                                                           (1) 

for all ellipsoids 𝐸 . Assume that ℎ𝑗converges locally uniformly to a homeomorphism ℎ of ℝ2𝑛 . 

Then  

𝑐(ℎ𝑗(𝐸)) = 𝑐(𝐸)                                                           (2) 

holds for all ellipsoids 𝐸. 

The Hamiltonian diffeomorphism is the time one map of the Hamiltonian flow, all Hamiltonian 

diffeomorphisms form a group, and we know that this group is a subgroup of the group of symplectic 

diffeomorphism. One natural question is that the 𝐶0 rigidity theorem still holds for the Hamiltonian 

diffeomorphisms. Oh and Müller studied the 𝐶0limits of the Hamiltonian diffeomorphisms and give 

the notations of Hamiltonian topology [11]. They consider both the limits of the Hamiltonian flows 

and Hamiltonian functions; the Hamiltonian topology involves the 𝐶0  topology and the Hofer 
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topology. The Hofer topology is induced by the bi-invariant Finsler metric which was first defined 

by Hofer [5, 6].  

In this paper we want to investigate the rigidity phenomenon for Poisson diffeomorphisms on the 

Poisson manifold. The Poisson form may be degenerate and this brings difficulties to the research of 

Poisson rigidity, the symplectic methods cannot be used directly for general Poisson manifold. T. 

Rybicki studied the foliated, Poisson and Hamiltonian diffeomorphisms, defines the local flux 

homomorphism [14]. Inspired by the Poisson Hofer type metric which was defined by Sun and Zhang 

on the Poisson manifold [16], using the geometry structure of the Poisson manifold, we have the 

following results on some special Poisson manifold: 

Theorem 3. The group of Poisson diffeomorphism of a C Poisson manifold is 𝐶1closed in the group 

of all diffeomorphisms. 

Consider the group of Poisson diffeomorphisms under the locally uniform limits, we have 

Theorem 4. Assume ℎ𝑗 : ℝ
𝑛 →ℝ𝑛 is a sequence of Hamiltonian diffeomorphisms on the standard 

Poisson space satisfying 

𝑐(ℎ𝑗(𝐸)) = 𝑐(𝐸)                                                             (3) 

for all elliptic cylinder 𝐸 . Assume that ℎ𝑗 converges locally uniformly to a Hamiltonian 

diffeomorphism ℎ of the standard Poisson space. Then  

𝑐(ℎ𝑗                                                                        (4) 

holds for all elliptic cylinder 𝐸. 

2. Preliminaries 

In this section, we will introduce some notations needed in the proof; more results can be found in [1, 

5, 9, 10, 14].  

Definition 5[10]. For a smooth function H on the Poisson manifold, the Poisson vector is defined by  

𝑋𝐻[𝑔] = {𝑔, 𝐻}                                                              (5) 

for all smooth function g. 

Definition 6[10]. We call a diffeomorphism𝜙Poisson diffeomorphism if it satisfies  

𝜙∗{𝑔, ℎ} = {𝜙∗𝑔, 𝜙∗ℎ}                                                         (6) 

for all smooth function 𝑔, ℎ. 

Symplectic leaf is the connected component of the sets which can be connected by Hamiltonian path. 

Poisson manifold is the union of symplectic leaves. We call a Poisson manifold type C Poisson 

manifold if the Poisson manifold is compact, the leaves are dense and each leaf is compact, the 

Hamiltonian function  on each leaf is well defined. 

Definition 7. Let 𝑙𝛼 ∈ 𝑀be the symplectic leaf, 𝑐𝑠be the symplectic capacity, the Poisson capacity 

can be defined as following 

𝑐𝑝(𝑀) = 𝑠𝑢𝑝
𝑙𝛼

𝑐𝑠(𝑙𝛼)                                                          (7) 

For arbitrary set A, and open subset U, we define the following function similarly 

𝑐 (𝐴) = 𝑖𝑛𝑓{ 𝑐(𝑈), 𝐴 ⊂ 𝑈}                                                   (8) 

3. Proof of main results 

We now can give the proof of the main results in this part. Suppose that 𝑓𝑗 ,𝑔𝑗are smooth functions on 

Poisson manifold, and 𝑓𝑗 → 𝑓, 𝑔𝑗 → 𝑔 in the 𝐶1 topology, 𝑓 ,𝑔 are 𝐶1functions, since the Poisson 

bracket is 𝐶1in nature, the functions are somehow 𝐶1closed.  

Proof of Theorem 3. For Poisson diffeomorphisms𝜙𝑗, if 𝜙𝑗 → 𝜙 in 𝐶1topology, by the assumptions, 

the manifold is type C, so each leaf is compact. We know that the leaf carries a symplectic structure 
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and coincides with the Poisson structure. Suppose that the restriction of the Poisson diffeomorphism 

on the symplectic leaf is𝜙𝑗𝐿 , by theorem 1 we know that on each compact symplectic leaf, the 

diffeomorphisms satisfy 

𝜙𝑗𝐿 → 𝜙𝐿  

𝜙𝑗𝐿
∗{f, g}𝐿 → 𝜙𝐿

∗{f, g}𝐿                                                          (9) 

for any smooth function  𝑓,𝑔.  And hence 

𝜙𝐿
∗{f, g}𝐿 = {𝜙𝐿

∗
f, 𝜙𝐿

∗𝑔}𝐿                                                     (10) 

Since L is arbitrary and dense, we have  

𝜙∗{f, g} = {𝜙∗f, 𝜙∗𝑔}                                                         (11) 

we finish the proof. 

Remark 1. V. Humilière points the following convergence facts in the 𝐶0topology [9]. Let 𝑓𝑗 ,𝑔𝑗be 

smooth functions, and 𝑓𝑗 → 𝑓, 𝑔𝑗 → 𝑔in the 𝐶0topology and  

{𝑓𝑖 , g𝑖} → ℎ                                                               (12) 

But in general 

{f, g} ≠ ℎ                                                                 (13) 

whenh=0, Cardin and Viterbo answered this question in some conditions [12]. Arnaud studied the 

rigidity for Tonelli Hamiltonians [8]. K. Samvelyan, F. Zapolsky studied the convergence under the 

𝐿𝑝topology [15]. 

Instead of studying the 𝐶0rigidity directly, we study the convergence in the capacity sense. 

Proof of Theorem 4: Recall the definition of standard Poisson space(ℝ𝑛 , { }0), If𝑛 = 2𝑚, this is 

obvious by Theorem 2. When𝑛 = 2𝑚 + 1, the standard Poisson space can be viewed a generalization 

of symplectic space. Each symplectic leaf is a symplectic space with the same dimension; the 

symplectic form is the standard form𝜔0. The remaining one-dimensional subspace is perpendicular 

to each leaf. 

Since the manifold is the standard Poisson space, we know that the Poisson capacity 𝑐𝑝(𝑀) 

is well defined, and satisfies the monotonicity and conformality. The following proof can be given 

by the similar way as in Theorem 6[5], we just give the outline of the proof. By the assumptions of 

the convergence: 

ℎ−1 ∘ ℎ𝑗 → 𝑖𝑑                                                              (14) 

The elliptic cylinder E is defined by the product of the ellipsoid and the remaining one-dimensional 

subspace in the standard Poisson manifold: 

𝐸 = 𝑒 × ℝ                                                                (15) 

For 𝜀small enough and j large enough, we have 

ℎ−1 ∘ ℎ𝑗(1 − 𝜀)𝐸 ⊂ 𝐸 ⊂ ℎ−1 ∘ ℎ𝑗(1 + 𝜀)𝐸                                        (16) 

ℎ𝑗(1 − 𝜀)𝐸 ⊂ ℎ(𝐸) ⊂ ℎ𝑗(1 + 𝜀)𝐸                                               (17) 

By the conformality we have 

(1 − 𝜀)2𝑐(𝐸) = 𝑐(ℎ𝑗(1 − 𝜀)𝐸) 

(1 + 𝜀)2𝑐(𝐸) ≥ 𝑐(ℎ𝑗(1 − 𝜀)𝐸)                                                (18) 

So we have 

𝑐(𝐸) = 𝑐(ℎ(𝐸))                                                            (19) 

Remark 4. Hofer and Viterbo proved the following rigidity involving the Hofer metric [7, 13]. For 

Hamiltonian diffeomorphisms 𝜓𝑗 ,𝜓, and 𝜑 ∈ 𝐶0(ℝ2𝑛 , ℝ2𝑛). If the following conditions hold: 

𝑑(𝜓𝑗 , 𝜓) → 0 
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𝜓𝑗 → 𝜑 locally uniformly                                                   (20) 

Then  

𝜓𝑗 → 𝜑                                                                   (21) 

Remark 5. We know that Poisson G manifold is closed and each leaf is closed, so Poisson G manifold 

is Poisson C manifold, and hence the Poisson diffeomorphisms of a G Poisson manifold is 𝐶1closed 

in the group of all diffeomorphisms. 

Corollary 6. For a special three dimensional Poisson G manifold, consider the three dimensional ball 

removing a small ball with the same center. Let the leaf be the 2 sphere, in this case the group of 

Poisson diffeomorphism is 𝐶0 closed in the group of all diffeomorphisms, that is if 𝜙𝑗 → 𝜙  in 

𝐶0topology, then 𝜙 is a Poisson diffeomorphism. 

Proof: Since the leaf is dense and closed, we know that 

𝜙𝑗𝐿 → 𝜙𝐿                                                                           (22) 

on each leaf, by 𝐶0closed theorem of symplectic diffeomorphisms, we know that 𝜙𝐿  is symplectic 

diffeomorphism on each leaf, so we finish the proof. 

Another example is the standard Poisson space(ℝ3, { }0). For other Poisson manifold, in order to 

use the symplectic methods, we should study the leaf structure carefully and there should be some 

more manifolds have these rigidity properties. 

4. Conclusion 

In this paper we study the rigidity of the Poisson diffeomorphisms on a class of special manifold 

named Poisson C manifold. We show the 𝐶0 convergence and 𝐶1 convergence of the Poisson 

diffeomorphisms. This partly generalizes the symplectic rigidity results to the Poisson manifolds. 
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