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Abstract 

The fifth Coupled Model Comparison Program (CMIP5) includes 60 coupled models in up to 

19 model groups. How to objectively and quantitatively assess and compare the performance 

of different climate models is becoming increasingly important. Most of the current model 

evaluation methods are based on a single variable. However, in model comparison and 

assessment, we often need to assess the ability of a model to simulate a particular climate 

phenomenon. To address the shortcomings of previous model evaluation methods, this paper 

applies a self-organizing mapping neural network-based weather-climate modal model 

evaluation method based on the weather-type classification. Using the European Centre for 

Medium-Range Weather Forecasts (ECMWF) Reanalysis Data (ERA-40) and National Centers 

for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) 

reanalysis data as a reference field, the simulation performance of the seven CMIP5 climate 

models for East Asia over the period 1980-1999 is evaluated in a number of ways: first, the 

annual mean cycle and interannual variability simulations are evaluated using climate 

indicators, and then the simulation of weather modal occurrence using the Self-Organizing 

Mapping (SOM) technique is highlighted. assessment. It is concluded that the choice of the 

reference field is particularly important and is decisive for the results of the climate model 

assessment, which is better when ERA-40 is used as the reference field (as opposed to NCEP). 
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1. Introduction 

Climate models are powerful tools for studying the climate system and climate change, and their 

simulation results are an important data base for climate prediction and climate change risk 

assessment. As the rate of global warming accelerates, surface ecology, dynamic hydrological cycle 

processes, and socio-economic development are affected, thus affecting human production and 

livelihoods. The impact of extreme weather events is significant, and the ability of models to simulate 

extreme weather and climate events is directly related to the accuracy and reliability of future 

predictions. At present, however, climate models are difficult to simulate extreme weather and 

climate events in detail, and require significant research. 

As a new approach to model evaluation, RADIC′ AND CLARKE (2011) [1] used SOM to evaluate 

the simulation results of 22 IPCC climate models in North America and its western region. The main 

method is to evaluate the model simulation capability by calculating the correlation coefficients for 

the frequency of occurrence at each node of the observation and simulation fields. 

In this paper, the SOM is used in combination with other climate indicators to evaluate the simulation 

results of seven models in East Asia. 
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2. Model output and validation data (Model and Reference Data Sets) 

2.1 The CMIP5 Simulations. 

Our evaluation is based on the late-twentieth-century simulations by 7 GCMs from the fifth Coupled 

Model Comparison Program (CMIP5) [2]. The CMIP5 climate models used in this study are listed in 

Table 1. We evaluate model performance using various metrics by seven climate variables. These 

seven variables are monthly grids of relative humidity at 500 hPa (HUR500), precipitation (PR), sea 

level pressure (SLP), air temperature at 500 hPa (TA500), the eastward wind and northward wind at 

500 hPa (UA500, VA500), geopotential height at 500 hPa (ZG500). The data have been downloaded 

in the form of monthly means from the ESG Data Gateways (http://pcmdi3.llnl.gov/esgcet/home.htm).  

 

Table 1 Model identification, originating center, and atmospheric resolution 

Model Center and location Atmosphere resolution 

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) 192×96 
MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M) 192×96 

MPI-ESM-P Max Planck Institute for Meteorology (MPI-M) 192×96 

MIROC5 

Atmosphere and Ocean Research Institute (The University of Tokyo), 

National Institute for Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology (MIROC) 

256×128 

inmcm4 Institute for Numerical Mathematics (INM) 180×120 

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory (NOAA-GFDL ) 144×90 

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory (NOAA-GFDL ) 144×90 

 

The evaluation is performed by comparing GCMs historical simulations with the National Centers 

for Environmental Prediction / National Center for Atmospheric Research (NCEP/NCAR, Kalnay et 

al., 1996) [3] and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis Data 

(ERA-40, Simmons and Gibson, 2000) [4], which we take as the reference dataset (1970-1999). And 

all of the data were interpolated to a common grid with a resolution of 2.5°×2.5°. 

2.2 Reference Data. 

The best available reference data come from two 20-year reanalysis efforts, namely the National 

Centers for Environmental Prediction / National Center for Atmospheric Research (NCEP/NCAR, 

Kalnay et al., 1996) [3] and European Centre for Medium-Range Weather Forecasts (ECMWF) 

Reanalysis Data (ERA-40, Simmons and Gibson, 2000) [4]. 

In this study, we use the two sets of reference data for the Self-Organizing Maps [5] procedure and 

the performance metrics procedure: NCEP reanalysis of daily gridded atmospheric data from 1980 to 

1999 with a resolution of 2.5°×2.5° .  

 

 

Fig. 1 Analysis domains: large domain (large rectangular) and small domain (rectangle inside the 

large one) 

Analysis Domains: Large Domain And Small Domain
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The area used for the analysis is shown in Fig. 1. The large domain covers the region between 90° 

and 140° E of longitude and 15° and 55° N of latitude, and the small domain covers the region 

between 105° and 130° E of longitude and 20° and 40° N of latitude. 

3. Validation methods 

3.1 Statistical metrics. 
3.1.1 Relative Error (RE) 

RE [1] is defined as follows. 

RMSE

RMSERMSE
RE

−
=                                                          (1) 

where RMSE is the median, not the mean, of the RMSE. 

RMSE (Root-mean Square Error) [1] can be calculated according to the following formula (F is the 

simulated field, R is the reference field). 
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                                             (2) 

where i is longitude, j is latitude, and t is time. W is the sum of weights 
ijtw . The calculated RE values 

are both positive and negative, the larger the negative value, the closer it is to the observation field 

and the better the simulation performance. 

3.1.2 Model Variability Index (MVI) 

MVI [6] can be calculated by the following formula. 


=

−=
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

                                                          (3) 

where 2  is the ratio of variance of the simulated field to the observed field and N is the number of 

variables. The calculated MVI is a positive value, and the smaller the value the better. 

3.2 Self-organizing maps technique. 
3.2.1 SOM Profile 

Self-organizing feature map (SOM) [5], proposed in 1981 by the Finnish scholar Professor Teuvo 

Kohonen of Helsinki University, is an unsupervised artificial neural network primarily used for 

pattern recognition and classification, and in many respects resembles the traditional form of cluster 

analysis. The main features of SOM are self-organizing learning, high clustering quality, more 

objective results, probability distribution of the samples, and topology preservation properties. 

The main difference between SOM and other clustering methods is that there is no a priori experience 

with SOM, the development and fundamentals of which were described in detail by Kohonen in 2000. 

Here, we use SOM to classify patterns in climate data, with a brief algorithmic procedure as follows. 

The output layer of the SOM represents the prototype pattern of the input data with a specified number 

of nodes. The SOM is first initialized and consists of a specified number of random nodes, each of 

which is assigned a weight vector and information about its position in the 2D space. The process of 

mapping the input vector to the SOM nodes is to find the nearest (in European space) weight vector 

and specify the geographic coordinates of the node. The node with the nearest weight vector is called 

the "best matching unit". The next step is to adjust and update the neighborhood of the best matching 

unit, i.e. the distance from the surrounding nodes to the input vector. The formula for calculating the 

weight vector is as follows. 

)]()()[()()()1( tWtVtttWtW −+=+                                           (4) 

where t is the current iteration, W is the weight vector, V is the input vector,  is the neighborhood 

function, and  is the learning rate. 
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The above process is repeated until all input data are trained by the SOM network a predetermined 

number of times. The number of original model features retained by the output layer depends on the 

size of the SOM, with smaller input data sets producing broad generalizations and larger SOMs 

capturing increasingly finer details; the basic feature of the SOM is that neighboring nodes represent 

similar patterns, while those that are farther apart represent completely different patterns. 

SOM is used for pattern evaluation to extract the dominant circulation modes corresponding to 

different weather processes and to quantitatively assess the ability of the patterns to simulate day-by-

day circulation patterns. The goal of our research is to find the best GCM model that can reproduce 

the weather scale pattern covering the whole region. 

3.2.2 Data Preprocessing 

a) SLP temporal SLP [1] : Daily SLP value for each grid point minus the daily SLP average over a 

20-year base period. 

b) SLP spatial SLP [1]: daily SLP value at each grid point minus the average daily SLP value for the 

entire region (allows the study to focus on the barometric gradient). 

4. Results 

4.1 Simulation of mean annual cycle 

For the seven selected variables (HUR500, PR, SLP, TA500, UA500, VA500 and ZG500), the annual 

average cycle simulation of the indicator statistics (Relative error) yielded the following results. 

a) The value of Relative error can be positive or negative, with a larger negative value indicating that 

the simulation results are closer to the observational field and the better the simulation performance 

of the model's annual mean cycle (as shown in Fig. 2). 

b) No model has all above-average or all below-average Relative error statistics for all variables. 

c) Some models had narrow interval ranges (e.g., in the large domain: MPI-ESM-LR, MPI-ESM-MR, 

MPI-ESM-P; in the small domain: MPI-ESM-MR, inmcm4). 

d) In the small domain, some models had Relative error > 0.5, indicating that the simulation of the 

annual mean cycle is more difficult in the small domain than in the large domain. 

e) Calculated Relative error correlation coefficients for the large and small domains: HUR500 (0.32), 

PR (0.25), SLP (0.11), TA500 (-0.10), UA500 (0.18), VA500 (-0.41), and ZG500 (0.96). This means 

that of the seven variables selected, only ZG500 is comparable between the two domains of size (an 

unsatisfactory result). 

f) The time base period is shifted forward by 10 years (switching from 1980-1999 to 1970-1989), and 

the average annual cycle change of the seven variables is insensitive to the switch in the 10-year base 

period. 

g) Multiple model means and medians are close to the observational field and better than any single 

model. 

 

 

Fig. 2. Relative errors over (left) the large and (right) the small domain for the seven climate 

variables: HUR500, PR, SLP, TA500, UA500, VA500 and ZG500 
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h) Some climate variables have severe outlier distributions (e.g., VA500 for inmcm4, GFDL-ESM2G, 

and GFDL-ESM2M). 

i) By examining the correlation coefficients of the Relative error values between two different 

variables, significant positive correlations were found between some of the different variables, such 

as in the large domain: HUR500 and TA500 (r = 0.59), SLP and TA500 (r = 0.64), UA500 and VA500 

(r = 0.85); and in the small domain: PR and UA500 (r = 0.63), UA500 and ZG500 (r = 0.62). 

4.2 Simulation of interannual variability. 

For the seven selected variables (HUR500, PR, SLP, TA500, UA500, VA500 and ZG500), 

simulations of interannual variation yielded the following indicator statistics. 

a) has both positive and negative values, with larger negative values indicating that the simulation 

results are closer to the observational field and the better the model's simulation performance for 

interannual variation (as shown in Fig. 3). 

b) Similar to the previous point, some models produced better results than others, but none of the 

models had all above-average or all below-average statistics for all variables. 

c) Some models had narrow interval ranges (e.g., in the large domain: MPI-ESM-P, MIROC5, GFDL-

ESM2G, GFDL-ESM2M; in the small domain: MPI-ESM-MR). 

d) In the small domain, some of the models are more diffuse, suggesting that simulating the average 

annual cycle is more difficult in the small domain than in the large domain. 

e) Calculated correlation coefficients for large and small domains: HUR500 (-0.10), PR (0.37), SLP 

(-0.79), TA500 (0.58), UA500 (-0.17), VA500 (-0.41), and ZG500 (0.86). This means that of the 

seven variables selected, only two variables, TA500 and ZG500, are comparable between the two 

domains of size (this result is not ideal).  

f) The time base period is shifted forward by 10 years (switching from 1980-1999 to 1970-1989), and 

the average annual cycle changes of the seven variables are not sensitive to the switching of the 10-

year base period. 

g) The mean and median of multiple models are very close to the observational field and better than 

any single model. 

h) Some climate variables have severe outlier distributions (e.g., VA500 and SLP for inmcm4, GFDL-

ESM2G, and GFDL-ESM2M). 

i) By examining the correlation coefficients of the Relative error values between two different 

variables, a number of different variables were found to be significantly positively correlated, such 

as in the large domains: HUR500 and SLP (r = 0.85), HUR500 and ZG500 (r = 0.60), PR and UA500 

(r = 0.81), SLP and VA500 (r = 0.78), VA500 and ZG500 (r = 0.61), especially notably TA500 and 

ZG500 (r = 0.98), HUR500 and VA500 (r = 0.90); in the small domains: PR and SLP (r = 0.60), 

TA500 and ZG500 (r = 0.88). 

 

 

Fig. 3. Values of 
22 /1  − , where 

2  represents the ratios of simulated (GCM) to reference 

(NCEP) variances, over the large and small domain, for the seven climate variables in Fig. 1 
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4.3 Simulation of occurrences of synoptic patterns. 

Seven models of daily SLP (1980-1999) were used to simulate the occurrence of weather modalities. 

Data preprocessing was performed separately for the large and small domains. 

SLP temporal SLP: Daily SLP value for each grid point minus the daily SLP average over a 20-year 

base period. 

SLP spatial SLP: daily SLP value at each grid point, minus the average daily SLP value for the entire 

region (allowing the study to focus on the barometric gradient). 

Experimental results: (shown in Fig. 4) Temporal SLP calculations were performed on the large and 

small domains (Fig. 4a, b, e, f), and spatial SLP calculations were performed only on the small domain 

(Fig. 4c, d). 

a) First, the results of temporal SLP are analyzed: in winter, the East Asian continent is under the 

control of the Mongolian-Siberian high pressure. Most of the SOM nodes represent intensity features 

of the Mongolian-Siberian high-pressure anomaly. 

In summer, the East Asian continent is under the control of the Indian low pressure, while the ocean 

is under the Pacific subtropical high pressure. Most of the SOM nodes also exhibit the anomalous 

intensity signature of the Pacific subtropical high pressure. 

Among them, the amplitude range is smaller in summer than in winter (large domain: winter -25-20, 

summer -15-10; small domain: winter -15-20; summer -15-10). 

The spring and fall SOM nodes also depict similar modes. temporal SLP represents the daily 

anomalies relative to the 20-year annual average, and more information is given by spatial SLP. 

b) The results of spatial SLP are then analyzed: Fig. 4c depicts the dominant winter weather patterns 

that allow us to track the development of winter cyclones. Most of the patterns are characterized by 

the Mongolian-Siberian high pressure located in the East Asian continent, such as nodes (1, 1), (2, 1), 

(3, 1), (4, 1). And there is a north-south movement of the high-pressure system: (1, 1), (2, 1), (3, 1), 

(4, 1) are more to the south, while (1, 4), (2, 4), (3, 4), (4, 4) are more to the north. 

In summer, the circulation type is mainly influenced by the Pacific subtropical high pressure, and the 

strength of the anticyclone and pressure is generally lower than in winter (-20 to 25 in winter and -15 

to 10 in summer). 

c) During the transition seasons of spring and fall, the resulting weather patterns combine the 

characteristics of the winter patterns with those of the summer patterns (not shown in Fig. 4). 

After creating the SOM representing the SLP anomaly characteristics of each model, the next task is 

to evaluate the simulation performance of each model. Our evaluation is based on the premise that a 

good model will reproduce the actual atmospheric weather patterns at the same location and at the 

same frequency. Accordingly, the success of a model's simulation depends on the magnitude of the 

correlation coefficient between its occurrence frequency and the corresponding occurrence frequency 

in the reference field. 

Next, we can calculate the frequency of each SOM node. In Fig. 5, the frequency of occurrence of 

each node of ERA-40, NCEP, and GCM (here again, MIROC5 is used as an example) is plotted. Fig. 

5a, c correspond to Fig. 4a, and Fig. 5b, d correspond to Fig. 4c. 

In Fig. 5a-c (temporal SLP), the frequency correlation coefficients are (ERA-40) 0.74 (significant 

positive correlation) and (NCEP) -0.51 (significant negative correlation), respectively, indicating that 

the frequency of modal occurrence of GCMs in a given season during the reference period is often 

the same with the reference field (ERA-40), but is often the opposite with the reference field (NCEP). 

In other words, the temporal SLP modalities that frequently occur in the reference field (ERA-40) 

may also occur in MIROC5, but the temporal SLP modalities that frequently occur in the reference 

field (NCEP) may not necessarily occur in MIROC5. 

In Fig. 5b-d (spatial SLP), the frequency correlation coefficients are 0.44 and 0.30 (weak correlation), 

respectively, indicating that the case of spatial SLP is also the case where the frequency of modal 



International Journal of Science Vol.7 No.11 2020                                                             ISSN: 1813-4890 

 

55 

 

occurrence in GCM is almost the same as that in the reference field. The results of the correlation 

coefficients for the small domains are shown in Table 2 (correlation coefficients greater than 0.5 are 

bolded) for the changing seasons, and the values of the correlation coefficients vary considerably with 

mode and season. 

 

Fig. 4. The 4 ×4 SOMs of SLP anomalies (hPa) trained from Reference ( ERA-40, NCEP ) and one 

GCM (MIROC5) over the baseline period 1980–99. Patterns of temporal SLP anomalies over the 

small domain (a) in winter (DJF) and (b) in summer (JJA). Patterns of spatial SLP anomalies over 

the small domain (c) in winter and (d) in summer. Patterns of temporal SLP anomalies over the 

large domain (e) in winter and (f) in summer 
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Fig. 5. Comparison of model performance for temporal and spatial SLP anomalies. Reference and 

GCM (MIROC5) frequency of occurrences (%) for each node on the 4×4 SOM of winter SLP 

anomalies over the small domain. (a) Node coordinates correspond to the node coordinates of SOM 

in Fig. 4a; (b) Node coordinates are from SOM in Fig. 4c 

 

Table 2. Correlation coefficients r between node frequencies of 4×4 SOM in the Reference and each 

GCM, on seasonal basis (DJF, MAM, JJA, and SON). SOMs are given for the temporal and spatial 

SLP anomalies over the small domain. Bold font marks the correlations significantly>0 (at the 95% 

confidence level) 

Reference Data Model 
Temporal SLP patterns Spatial SLP patterns 

MAM JJA MAM JJA MAMJJA MAM JJA  

ERA-40 

MPI-ESM-LR 0.76 0.74 0.47 0.51 0.31 0.05 0.65 0.68 

MPI-ESM-MR 0.56 0.68 0.40 0.54 0.60 0.50 0.52 0.50 

MPI-ESM-P -0.55 0.74 -0.15 0.35 0.25 0.37 0.53 0.67 

MIROC5 0.32 0.70 0.58 0.74 0.51 -0.23 0.45 0.44 

inmcm4 0.76 0.64 0.55 0.18 0.10 -0.13 0.34 0.45 

GFDL-ESM2G 0.67 0.70 0.67 0.76 0.50 0.42 0.39 0.37 

GFDL-ESM2M 0.72 0.62 0.71 0.65 0.50 0.64 0.55 0.49 

NCEP 

MPI-ESM-LR 0.54 0.40 0.45 -0.17 0.03 0.15 0.73 0.42 

MPI-ESM-MR0.45 0.43 0.48 0.01 0.48 0.46 0.23 0.38  

MPI-ESM-P -0.37 0.47 -0.40 0.30 0.35 0.54 0.33 0.56 

MIROC5 0.29 0.43 0.63 -0.51 0.61 0.05 0.32 0.30 

inmcm4 0.74 0.56 0.36 0.44 0.05 -0.21 0.54 0.24 

GFDL-ESM2G 0.43 0.66 0.71 -0.22 0.45 0.58 0.16 0.41 

GFDL-ESM2M 0.59 0.60 0.67 -0.23 0.61 0.52 0.08 0.57 

 

Change the size of the SOM (4×4 → 3×4, 5×4) and perform the same calculation (Table 3). 

a) For the temporal SLP, there were a large number of significant positive correlations for all seasons 

and for all SOM sizes calculated. Specifically, in the small domain, the proportions of significant 

positive correlations (r > 0.50) for the four seasons were: (ERA-40) spring (47.62%), summer 

(61.90%), autumn (38.10%), and winter (47.62%); (NCEP) spring (23.81%), summer (19.05%), 
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autumn (23.81%), and winter (28.57%). In the large domain: (ERA-40) spring (52.38%), summer 

(47.62%), fall (52.38%), and winter (28.57%); (NCEP) spring (28.57%), summer (57.14%), fall 

(33.33%), and winter (47.62%). 

In the small domain, the four seasons were significantly positively correlated (r > 0.20): (ERA-40) 

spring (80.95%), summer (80.95%), fall (95.23%), and winter (80.95%); (NCEP) spring (66.67%), 

summer (57.14%), fall (57.14%), and winter (57.14%). In the large domain: (ERA-40) spring 

(95.24%), summer (100.00%), fall (76.19%), winter (71.43%), (NCEP) spring (95.24%), summer 

(100.00%), fall (80.95%), winter (76.19%). 

b) For spatial SLP, the four seasons were significantly positively correlated (r > 0.50) in the following 

proportions: (ERA-40) spring (47.62%), summer (23.81%), fall (33.33%), and winter (42.86%). 

(NCEP) Spring (19.05%), Summer (23.81%), Autumn (38.10%), and Winter (28.57%). (r > 0.20) 

The proportions were as follows: (ERA-40) spring (85.71%), summer (57.14%), fall (80.95%), and 

winter (95.24%). (NCEP) Spring (61.90%), Summer (61.90%), Fall (71.43%), and Winter (71.43%). 

These large number of significant positive correlations indicated that, on a seasonal basis during the 

baseline period, almost every GCM could reproduce both temporal SLP abnormalities and spatial 

SLP abnormalities. Further analysis shows that the success of reproduction depends on the GCM 

model's seasonal simulation of the 20-year average, with the larger the differences in the simulations, 

the larger the differences in the frequency characteristics. 

 

Table 3 After varying the size of the SOM (from 4 × 4 to 3 × 4 and 5 × 4) and performing the same 

calculations, there were a large number of significant positive correlations for all seasons and for all 

SOM sizes 

r Domain 
ERA-40 (%) NCEP (%) 

MAM JJA SON DJF MAM JJA SON DJF 

r>0.5 

Temporal SLP(Large domain) 52.38 47.62 52.38 28.57 28.57 57.14 33.33 47.62 

Temporal SLP(Small domain) 47.62 61.90 38.10 47.62 23.81 19.05 23.81 28.57 
Spatial SLP(Small domain) 47.62 23.81 33.33 42.86 19.05 23.81 38.10 28.57 

r>0.2 

Temporal SLP(Large domain) 95.24 100.00 76.19 71.43 95.24 100.00 80.95 76.19 

Temporal SLP(Small domain) 80.95 80.95 95.23 80.95 66.67 57.14 57.14 57.14 

Spatial SLP(Small domain) 85.71 57.14 80.95 95.24 61.90 61.90 71.43 71.43 

 

A sensitivity study of the calculated results: each GCM was moved forward 10 years, while the 

reference field was kept constant. The difference between the old and new correlation coefficients for 

the temporal SLP was calculated to be. 

Large domain: the average difference in correlation coefficients over the four seasons from small to 

large. (ERA-40) Spring (-0.01), Fall (0.05), Summer (0.08), Winter (-0.06). (NCEP) Summer (-0.03), 

Spring (-0.09), Winter (-0.08), and Autumn (-0.10). 

Small domains: the four-season average differences in correlation coefficients were from small to 

large. (ERA-40) Winter (0.20), Summer (0.11), Spring (0.12), Autumn (0.31). (NCEP) fall (-0.10), 

summer (-0.10), spring (-0.19), and winter (-0.19). 

Meanwhile, the old and new differences in correlation coefficients for spatial SLP were.  

Small domain: the average difference in correlation coefficients over the four seasons from small to 

large. (ERA-40) Spring (0.05), Fall (0.09), Summer (0.06), Winter (0.22). (NCEP) winter (0.03), 

spring (-0.04), summer (0.08), and fall (0.18). 

Most of the differences between old and new correlation coefficients are very small, and the above 

results show that the simulation of the four seasons is insensitive to the switching of the 10-year base 

period. The results of the model evaluation were basically unchanged. 

In order to rate the correlation between the frequency of occurrence of the two model nodes, the 

following set of evaluation measures is presented (RADIC  ́AND CLARKE, 2011) [1]. 
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a) Average correlation coefficient: Average correlation coefficient for all seasons and all SOM sizes. 


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where m is the product of the number of seasons and the type of size (4 seasons, 3 sizes, then 

m=4*3=12). r is the correlation coefficient. The higher the value, the better. 

b) Define the cumulative sum of all significantly correlated numbers for the purpose of significant 

positive correlation of statistical totals. 
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0r is the threshold for (t-test at 95% confidence level) significant correlation, the larger the SM  value 

the better. 

 

 

Fig. 6 (top to bottom) Correlation measure MC, significance measure MS, and rank measure MR 

for each model. The measures are derived for three different cases: SOMs of temporal SLP 

anomalies over the small domain, SOMs of temporal SLP anomalies over the large domain, and 

SOMs of spatial SLP anomalies over the small domain 

 

c) Rating Indicators (Schuenemann and Cassano, 2009) [7] 


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Meaning of rank: The best pattern has a rank value of 1 and the worst is 7. The higher the RM , the 

better. 

It is possible to evaluate time and space anomalies using and, while only the relative performance of 

the modes is given. 

When ERA-40 is used as the reference field, the correlation between the three evaluation measures 

is high (r-means 0.84 and 0.80, respectively), i.e., the shape of each polyline is very close in the three 

plots, and very poor (r-means 0.07) from the Spatial SLP results. 
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When NCEP was used as the reference field, the correlation between the three evaluation measures 

became worse, with a mean r value of 0.44 and 0.46 for the Temporal SLP for the large and small 

domains, respectively, i.e., the shape of each polyline differed greatly among the three plots. 

The above calculations show that the results of the seven-mode Temporal SLP simulations are in 

good agreement with the ERA-40 reanalysis data, while the results differ greatly from the NCEP 

reanalysis data. In addition, the differences between the Spatial SLP simulation results and the ERA-

40 and NCEP reference fields are large. 

In addition to the above, we can conclude that Temporal SLP has low sensitivity to the choice of the 

three different measures when ranking the model evaluations with ERA-40 as the reference field, and 

that the results of the Temporal SLP model rankings are insensitive to the choice of the domain size. 

The Spatial SLP results are sensitive to both ERA-40 and NCEP as the reference field. 

 

Table 4 Correlation coefficients for the three indicators 
Reference Data Domain r (MC, MS) r (MS, MR) r (MR, MC) 

ERA-40 

Temporal SLP(Large domain) 0.76 0.85 0.90 

Temporal SLP(Small domain) 0.91 0.75 0.72 

Spatial SLP(Small domain) 0.05 -0.21 0.37 

NCEP 

Temporal SLP(Large domain) 0.55 0.31 0.46 

Temporal SLP(Small domain) 0.48 0.40 0.50 

Spatial SLP(Small domain) -0.23 0.72 -0.18 

 

5. Conclusion 

How to objectively and quantitatively assess and compare the simulation capabilities of different 

climate models for a particular climate phenomenon is becoming increasingly important. To address 

the shortcomings of previous model evaluation methods, this paper applies a self-organized mapping 

neural network-based weather-climate model evaluation method based on the weather-type 

classification. Using the reanalysis data of the ERA-40 and the NCEP/NCAR as the reference field, 

the simulation performance of seven CMIP5 climate models in East Asia during 1980-1999 is 

evaluated from several aspects. First, the annual mean cycle and inter-annual variability simulations 

are evaluated using climate indicators, and then the simulation of weather pattern occurrence using 

SOM technique is highlighted. The evaluation is then focused on the simulation of weather pattern 

occurrence using SOM techniques.  

It is concluded that the choice of reference field is particularly important and decisive for the results 

of the climate model assessment, and that the results are better when ERA-40 is used as the reference 

field (as opposed to NCEP). Although the simulation results vary among different models, most of 

the models are able to reproduce the evolution of extreme climate events and predict the future 

extreme climate change effectively. The results of this study are useful for the study of the response 

to future extreme climate change in China under the greenhouse gas increase scenario. 
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