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Abstract 

The operational data collected by wind farm have the characteristics of less fault data and high 

sample dimension. However, it is difficult for diagnostic model to accurately diagnose the fault 

type, and the high sample dimension will increase the cost of model training. In order to solve 

these two problems, this paper introduces Generative Adversarial Networks and Stack Sparse 

Autoencoder. Firstly, a small number of fault data are input into GAN neural network, and the 

new data approximate to the fault data are generated by learning the feature distribution of 

fault data, so as to improve the sample class imbalance in fault diagnosis of wind turbine. 

Secondly, the feature distribution of wind power data are extracted layer by layer by Stack 

Sparse Autoencoder, and the fault type related features in high-dimensional data is determined 

by combining the reconstruction error of each layer. Finally, the extreme random tree is 

constructed based on the reduced dimension data to realize the fault diagnosis of wind turbine. 

The results on a wind farm data set show that, compared with the traditional over sampling 

methods, the proposed method can effectively balance the fault sample set and improve the 

diagnostic accuracy of the diagnosis model in the case of insufficient fault samples. 
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1. Introduction 

Wind turbine has been operating in harsh natural environment such as thunderstorm, sun exposure, 

snow and so on for a long time. In addition, the internal structure of the wind turbine is complex, and 

each component is easy to be affected by different alternating loads, which is easy to cause various 

electrical and mechanical failures of wind turbine [1]. Once the wind turbine fails, it will lead to long-

term shutdown, which not only affects the generating efficiency of the generator set, but also causes 

catastrophic accidents, resulting in huge economic losses. Therefore, real-time monitoring and 

diagnosis of wind turbine operating conditions is of great significance. 

Currently, the mainstream wind turbine fault diagnosis methods are model-based method[2] and data-

driven method[3]. The former establishes accurate mathematical or physical models[4] based on the 

physical characteristics of wind turbines and their subsystems, which can overcome the difficulty in 

obtaining fault data. However, due to the randomness of wind energy and the complexity of fault 

mechanism of wind turbines, accurate modeling is more difficult.The latter mostly uses supervisory 

control and data acquisition (SCADA) system to mine potential fault information from real-time 

collected operation data to realize the monitoring and diagnosis of unit status without establishing 

accurate model and system prior knowledge, so it is widely used[5,6]. At present, there are few 

researches on fault diagnosis of wind turbine. The main methods include Support Vector Machine 

(SVM)[7], Neural Network[8] and Swarm Intelligence algorithm[9]. However, these methods are based 

on sufficient and balanced distribution of sample data as the premise. However, in the actual wind 

farm, it is often expensive to obtain sufficient fault data. Therefore, most of the obtained data are 

normal data, and only a small part is fault data. Moreover, the wind power data obtained based on 
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SCADA often has a high dimension, and the class imbalance of data will affect it.The diagnostic 

performance of traditional machine learning methods[10], while high-dimensional data increases the 

cost of model training. 

In accordance with the problem of data class imbalance, under sampling[11] or over sampling 

method[12] are mainly used to solve the problem.However, on the one hand, the under sampling 

method discards most class samples, which easily leads to the loss of important information. On the 

other hand, the traditional oversampling method is a simple copy of most class samples, without 

adding effective classification information[13]. Based on the synthetic minority over sampling 

technique (smote) and its improved method[14], samples are synthesized by using the local prior 

distribution information of samples, and the samples have no diversity. Therefore, this paper proposes 

to use generative adversarial networks (GANs)[15] to solve the sample class imbalance problem. 

GANs It is a new generation model. It can learn the probability distribution of the target data samples 

to generate forgery samples which are very similar to the target data samples. It is a new generation 

model that directly compares the distribution of the forged samples and the target samples to train 

and generate the generated samples that are most likely to approximate the real samples by means of 

confrontation, which effectively solves the traditional problem The over fitting problem caused by 

insufficient training samples in the generation process of generation model is rarely used to solve the 

imbalance problem of wind turbine fault diagnosis data. 

Aiming at the problem of high data dimension and high model training cost, stack sparse autoencoder 

(SSAE) has the advantages of fast learning speed, good generalization performance and strong noise 

resistance compared with traditional machine learning methods[16]. Xue et al. [17] proposed a rolling 

bearing fault diagnosis method based on SSAE. Experiments show that the accuracy of the fault data 

processed by SSAE has been greatly improved, and it is more suitable for the feature extraction task 

in high-dimensional space. Therefore, in this paper, stacked sparse self encoder SSAE is used to 

reconstruct high-dimensional data. SSAE (Stack Sparse Autoencoder) adds sparsity limitation to 

hidden layer neurons on the basis of AE (Autoencoder), enhances the ability of data dimension 

reduction, and adds the lost packet technology on the basis of SAE (Sparse Autoencoder) to enhance 

the robustness of cascading between self coding networks. 

 

 

Fig.1 Basic structure of GAN 

 

Extremely Randomized Trees (Extra-Trees, ET) are widely used in the field, Extra trees is an 

integrated machine learning algorithm[18] proposed by Pierre geurts and others in 2006. As a better 

classification algorithm applied in the field of fault diagnosis, it integrates multiple decision tree 
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models to form a classifier. Compared with neural network and support vector machine, it has the 

advantages of high detection accuracy, less adjustment parameters and easy parallel processing. 

To sum up, in order to solve the problem of low fault diagnosis rate caused by unbalanced data and 

high dimension in wind turbine fault diagnosis, In this paper, a fault diagnosis model based on 

WGAN-SSAE-ET is proposed. Firstly, the non-equilibrium data is class balanced by using GAN 

method. Then, SSAE is used to reduce the dimension of high-dimensional data and construct an 

Extremely Randomized Trees. Finally, a fault diagnosis model which can effectively identify and 

process high-dimensional and unbalanced data is established. Compared with SVM, KNN and CNN, 

the results show that the performance of the proposed detection model is better, and the correctness 

and innovation are verified. 

2. Related Work 

2.1 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) was proposed by Ian goodfill in 2014. It is a generative 

model, which is divided into two parts: generator g and discriminator D.Among them, G learns the 

probability distribution of real samples and generates similar false samples; D judges the authenticity 

of samples by measuring the similarity between real samples and false samples. The network structure 

is shown in Figure 1. The training process of GANs can be understood as the process of game. G and 

D are the two sides of the game. G generates more real samples as much as possible to cheat D, and 

D tries to distinguish the samples generated by G as false samples. Through continuous optimization 

and iteration of G and D, the final model is in a dynamic balance: the samples generated by G are 

basically the same as the real samples, and the discrimination probability of D for samples is close to 

0.5. The objective formula is defined as follows: 

min max ( , ) [log ( )]

[log(1 ( ( )))]

d

z

P
G D

P

V G D E D
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Among them, V (G, D) is the loss function, dP  is the real sample distribution, zP  is a group of random 

noise obeying Gaussian distribution, ( )D   is the probability that the sample is true, ( )G z is the false 

sample generated by G by inputting random noise variable z. 

In order to solve the problems of gradient vanishing and mode collapse in traditional GAN algorithm 

[19], Wasserstein distance [20] is used to measure the difference between real fault sample 

distribution dP  and composite sample distribution gP . It is defined as follows: 
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Among them, ( , )gd
P P  is the set of joint distribution   with dP  and gP  as edge distribution, ( , )gd

W P P  

is the infimum of sample expectation under joint distribution  , x  and y  are sample points in joint 

distribution  . 

Compared with the traditional JS distance, Wasserstein distance has superior smoothing 

characteristics, which can reduce the problem of gradient disappearing in the process of GAN training 

and improve the stability of training. In addition, there is no need to balance the training level of G 

and D in the process of GAN training. As long as the training of D is better, the samples generated 

by G will be more real and diverse.[21] 

Since formula (4) cannot be solved directly, Kantorovich Rubinstein dual transformation is performed 

[20]: 

g
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Where, || || 1LD   means that the Discriminator must satisfy the 1-Lipschitz condition. 
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In order to ensure the continuity of 1-lipschitz in GAN, this paper improves the objective function of 

GAN by adding a regular term to the discriminator loss function to carry out gradient penalty [19]. 

The formula is as follows: 

2

ˆˆ ˆ~ 2
ˆ[(|| ( ) || 1) ]

xx P zR E D= − x                                                (4) 

Where,   is the coefficient of regular term, x̂  is obtained by random sampling on the line between 

real sample x  and composite sample ( )G z , and 2  is 2-Norm. 

According to the above contents, in the improved GAN(WGAN-GP) based on Wasserstein distance 

and gradient constraint, the loss functions of generator and discriminator are as follows: 
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2.2 Stack Sparse Autoencoder 

Based on the characteristics of high latitude and complex data collected by SCADA system, this paper 

uses AE to extract the features of data. AE is a kind of neural network which uses back propagation 

algorithm to make the output value equal to the input value. It first compresses the input into the 

representation of latent space, and then reconstructs the output through this representation. The 

network model consists of two parts: encoder and decoder, in which the encoder is responsible for 

compressing the input into a potential spatial representation, and the decoder is responsible for 

reconstructing the latent spatial representation. As shown in Figure 2, AE network structure is divided 

into three layers, namely input layer, hidden layer and output layer. The input layer and hidden layer 

constitute the encoder network, and the hidden layer and output layer constitute the decoder network. 

 

 

Fig.2 The structure of AE 

Input layer

 
 

Output layer

Hidden layer

x1

x2

x3

W1

W2

W3

Wo

 
 

x4

xn

 
 

W4

1x

2x

3x

4x

nx

W
(1) W

(2)

Encoder Decoder



International Journal of Science Vol.7 No.12 2020                                                             ISSN: 1813-4890 

 

78 

 

Assuming that the input sample set is 1 2 3{ , , , , }nX x x x x= , the encoder operation formula is: 

(1) (1)h =s(W x +b )Ei jk i jk                                                          (7) 

Among them, h𝐸𝑖 is the potential spatial representation of the i-th sample after compression, 𝑊𝑗𝑘
(1)

 

represents the weight between the j-th neuron in the input layer and the k-th neuron in the hidden 

layer, 𝑏𝑗𝑘
(1)

 represents the offset between the j-th neuron in the input layer and the k-th neuron in the 

hidden layer, and s represents the activation function. 

The operation formula of decoder is as follows: 

(2) (2)x =s(W +b )i jk Ei jkh                                                          (8) 

Among them, 𝑥𝑖̃ represents the i-th reconstruction sample, 𝑊𝑗𝑘
(2)

 Represents the weight between the 

j-th neuron in the hidden layer and the k-th neuron in the output layer, 𝑏𝑗𝑘
(2)

 Represents the offset 

between the j-th neuron in the hidden layer and the k-th neuron in the output layer. 

In order to ensure the consistency between the reconstructed data and the original data, the 

reconstruction error should be minimized. The reconstruction error calculation formula is as follows: 

2

1
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2
i i i iL x x x x= −                                                        (9) 

For the deep self coding network with n samples as input and M network layers, the total loss function 

is as follows: 
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Among them, the first term of equation (5) represents the mean value of reconstruction error of the 

whole data set, and the second term is the weight attenuation term, in order to suppress the weight 

update speed and prevent over fitting. 𝜆 represents the weight attenuation parameter, 𝑆𝑖 represents the 

number of neurons in layer i-th, 𝑊𝑖𝑗
𝑙  represents the connection weight between layer l-th neuron i and 

layer (l+1)-th neuron j. 

In the training process, a sparsity constraint is added to AE, that is, only part of the hidden layer 

neurons are activated at the same time, which constitutes SAE. This sparsity expression can extract 

the correlation features within the data more effectively. The average activation value of neurons in 

the hidden layer was calculated as follows: 

1

1
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n
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i

h j x
n


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=                                                            (11) 

Where n is the number of training samples, h(𝑗, 𝑥𝑖) represents the activation value of the hidden layer 

neuron j at a given input 𝑥𝑖. 

When the activation value of neurons in the hidden layer is close to zero, it constitutes a sparsity 

limitation, and ˆ
j = ,𝜌 is a sparse parameter. In order to make ˆ

j  as close as possible to 𝜌, a sparse 

penalty term is added to the loss function of AE: 
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Therefore, the loss function of SAE is as follows: 

( , ) ( , )SAE pJ W b J W b J= +                                              (13) 

Where,   is a super parameter, which is used to control the sparsity penalty factor 
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Multiple SAE are stacked to form a stacked sparse self encoder (SSAE). The input samples are 

extracted layer by layer to further reduce the data dimension. The loss function is minimized by the 

back-propagation algorithm to learn more representative and sparse features. The interference part of 

the original sample is removed and the sample information is retained as much as possible The low-

dimensional features are used for classifier recognition, which can improve the training speed and 

classification performance of the classifier. The SSAE network structure is shown in Figure 3. 

 

Fig.3 The structure of SSAE 

 

2.3 Extremely Randomized Trees 

Extremely Randomized Trees is an integrated machine learning algorithm proposed by Pierre geurts 

and others in 2006. It integrates multiple base classifiers and votes according to the prediction results 

of each base classifier, which is usually expressed as t (V, x, x),D) Where t is the classifier model, V 

is the number of base classifiers, X is the input sample, and D is the sample set 

Step 1: given the original data sample set D, sample number n, feature number F. In the Extremely 

Randomized Trees classification model, each base classifier uses all the samples for training. 

Step 2: generate base classifier according to cart decision tree algorithm. In order to enhance the 

randomness, f features are randomly selected from F features during each node splitting, and the 

optimal attribute is selected for each node for node splitting, and no pruning is performed in the 

splitting process. Step 2 is iterated over the split data subset until a decision tree is generated. 

Step 3: repeat steps 1 and 2 for Z times to generate Z decision trees to form Extremely Randomized 

Trees. 

Step 4: use test samples to generate prediction results for the generated Extremely Randomized Trees. 

Extremely Randomized Trees algorithm is an improved algorithm of random forest algorithm. It 

improves the generalization ability of the model through the random selection of features and the 

randomness of node splitting. 

3. Methods 

GAN is a kind of generation model of learning real sample distribution by confrontation. This model 

can generate new samples with high quality without pre modeling. In the process of fault diagnosis, 

due to a few types of abnormal data, the distribution of data set used in intrusion detection is 

unbalanced. Therefore, this paper uses GAN to generate a small number of training samples to reduce 

the impact of unbalanced training samples on the accuracy of diagnosis. 

SSAE is a deep learning method, which includes input layer, n hidden layer and output layer. It takes 

AE as basic unit and stacks layer by layer in order to form a deep network structure. It has the ability 

x1

x2

x3

W1

W2

W3

Wo

y1

y2

ym 
 

x4

xn

 
 

W1

W2

W3

Wp

W1

W2

Wq

W4
 
 

 
 

h(1)

h(2)

h(3)

 
 

Input layer
Hidden layer

Output layer



International Journal of Science Vol.7 No.12 2020                                                             ISSN: 1813-4890 

 

80 

 

of deep feature extraction. It can reduce the dimension of high-dimensional data as much as possible, 

get the most characteristic data, and get the reconstructed original data, which is easier to be learned 

by extra trees. 

The ET algorithm integrates the classifiers formed by multiple decision tree models, which has the 

advantages of high detection accuracy, less parameters and easy parallelization. However, when the 

dimension of the data set is too high, the training time of the algorithm is long and the detection 

accuracy is low; when the distribution of the data set is unbalanced, the detection results of the 

algorithm tend to favor the majority of samples. Considering the characteristics of high dimension 

and class imbalance of wind power data, GAN and SSAE are combined to process wind power data 

according to the shortcomings of traditional ET algorithm, so as to improve the classification accuracy 

of ET algorithm. After using GAN to generate a small number of samples, the generated samples are 

combined with the original data set to form a new and balanced data set. The bagging algorithm is 

used to sample the new data set to generate multiple balanced data subsets, and then uses SSAE to 

reduce the feature dimension of each data subset, and each reduced data sample corresponds to each 

decision tree for training. In the stage of fault diagnosis, voting is carried out by combining the 

classification results of each decision tree. Finally, all decision trees are collected to form a forest and 

the classification results are obtained. The fault diagnosis model based on WGAN-SSAE-ET is 

constructed. The overall framework is shown in Figure 4. 

 

Fig.4 The framework of WGAN-SSAE-ET 

 

3.1 Expansion of Minority Training Data 

This paper uses GANto generate countermeasure network to generate the data of health state which 

is less in training data 

Step 1: firstly, five real data sets with health status of f1, f2, f3, f4 and f5 are separated respectively. 

Step 2: according to the input format of GANmodel, the 86 dimension data is converted into 10 × 10 

matrix vector, and the remaining 14 dimensions are supplemented with 0. 

Step 3: given a 100 dimensional Gaussian noise s with a value range of [-1,1], the noise is sent to the 

generator to generate false samples, and the generated data and real data are sent to the discriminator 

for training. 

Step 4: according to the set number of iterations, the discriminator is trained iteratively until the 

discrimination result is optimal. At this time, the parameters of the discriminator are fixed and the 

discrimination results are fed back to the generator. 
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Step 5: according to the set number of iterations, the training iteration of the generator is carried out 

until the worst discrimination result is obtained. At this time, the parameters of the generator are fixed. 

Step 6: repeat step 4 and step 5 until GANmodel is balanced. 

Step 7: combine the generated minority data as expanded samples with the original data, reorganize 

the expanded samples into 100 dimensional features, and take the first 86 dimensions of data as the 

expanded samples to get the balanced training data set. 

3.2 SSAE Training Process 

SSAE is used to extract features from the expanded data, as shown in Figure 6 

Step 1: build the first AE, set each rule j : 1x ,…, nx , j  is the hidden layer neuron of the object 

network; 1x ,…, nx  is the input layer neuron set. 

Step 2: determine the connection weight jW between j  and 1x ,…, nx . When the input neuron 

corresponds to the activation element in the rule, then W = 1; otherwise, W = 0, and the weight of 

residual which has little relationship with j  is set to 0. The neuron deviation was set as a random 

value. 

Step 3: use back propagation algorithm to train network and update connection weights. 

Step 4: repeat step 1-3 for each AE until all AE have completed training. 

3.3 Model Training 

The GAN model is used to generate minority class samples, SSAE feature extraction and extra trees 

algorithm are used to construct parallel design.As shown in Figure 7, the whole parallelization design 

idea is as follows: 

Step 1: firstly, the data sets captured on the network are digitized and normalized, and then the GAN 

model is expanded with a few samples. 

Step 2: integrate the minority class samples generated by GAN model with the original data samples 

to obtain a new and balanced data set. Through bagging algorithm, the new data set is randomly 

sampled to generate multiple data subsets with equal number and balanced distribution. 

Step 3: each data subset is extracted by SSAE to get the new data subset after reconstruction. 

Step 4: each data subset trains the corresponding decision tree model according to the generation 

mode of the decision tree. 

Step 5: gather all decision trees to form Extra-Trees. 

4. Experiments 

4.1 Data Acquisition and Processing 

The experimental hardware environment is Intel (R) Xeon (R) silver 4214CPU@2.2GHzThe 

software environment is windows 10 operating system, the experimental tools are Python 3.7, and 

the deep learning framework is tensorflow and keras. 

 

Table 1 Distribution of the samples 

Health Status Sample Size Training Set Test set Unbalanced rate 

f0 2515 1761 754 — 

f1 183 128 55 13.74 

f2 230 161 69 10.93 

f3 217 152 65 11.59 

f4 160 112 48 15.72 

f5 129 90 39 19.50 

Total 3434 2404 1030 — 
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The experimental data were provided by a wind farm in Hebei Province. Six kinds of health states 

were selected, including f0 as normal state and f1~f5 as abnormal state, which respectively indicated 

that the position encoder of yaw system was abnormal, the yaw slip rate was too fast, the yaw sensor 

was faulty, the over temperature protection sensor of yaw system was invalid, and the temperature 

protection of motor of yaw system triggered abnormal. There are 3404 samples in the data set. The 

training set and the test set are divided by a ratio of 7:3. The training set contains 2404 samples and 

the test set contains 1030 samples. Known data imbalance rate is defined as the ratio of majority class 

to minority class. According to table 1, compared with normal samples, the maximum unbalance rate 

of various fault samples is 19.50, and the minimum is 10.93. In this paper, the average value of 14.30 

is taken as the imbalance rate of the overall class distribution of fault data set to enhance the samples. 

Finally, the sample set is normalized to ensure the stability of GAN training: 

                                                         (14) 

Among them, ikx  is the k-th eigenvalue of the sample, ikx  is the normalized eigenvalue, and minx  and 

maxx  are the minimum and maximum values of the feature respectively. 

4.2 Evaluating Indicator  

For the multi-classification problem, we prefer the model to have a more accurate judgment for the 

minority class. However, because the sample size of the minority class is relatively small, its 

misjudgment and missed judgment have less impact on the overall classification accuracy, so it is 

unreasonable to only use the classification accuracy rate to measure the classification performance of 

the model. In order to ensure the accurate and comprehensive evaluation of the model performance, 

the evaluation system based on confusion matrix is adopted in this paper. The definition of confusion 

matrix is shown in Table 3. 

 

Table 2 Confusion matrix in fault diagnosis of yaw system 

Diagnosis 

Real 
f0 f1 f2 f3 f4 f5 

f0 d00 d01 d02 d03 d04 d05 

f1 d10 d11 d12 d13 d14 d15 

f2 d20 d21 d22 d23 d24 d25 

f3 d30 d31 d32 d33 d34 d35 

f4 d40 d41 d42 d43 d44 d45 

f5 d50 d51 d52 d53 d54 d55 

 

As shown in Table 2, when fault diagnosis is conducted, dii represents the sample size consistent with 

the actual state and the diagnosis state, and dij represents the sample size in which the actual state i is 

wrongly diagnosed as state j. Therefore, the Precision(P) and the Recall(R) are introduced. Among 

them, the Precision represents the proportion of correctly diagnosed samples in a certain class of 

samples diagnosed by the algorithm, which reflects the accuracy of the algorithm; the Recall 

represents the proportion of a certain type of samples diagnosed, reflecting the comprehensiveness of 

the algorithm. When evaluating the classification performance of the model for unbalanced samples, 

F1-score and G-mean are usually used as evaluation indexes. F1-score is the harmonic average of 

precision and recall. The higher the F1-score is, the better the classification effect is. P, R, F1 score 

and g-mean are as follows. 

ik min
ik

max min

x x
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x x
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                                                               (15) 

                                                               (16) 

                                                     (17) 

                                                       (18) 

Where, m is the number of sample categories. 

4.3 Experimental Results and Analysis 

The training set is used as the input of GAN to train it so that it can learn the original data distribution 

. In the initial stage of training, the distribution of the samples generated by the generator is not 

similar to the actual sample distribution. With the increase of training rounds, the generating ability 

of the generator increases gradually, and the distribution of composite samples and the actual sample 

distribution gradually tend to be consistent. Fig. 5 shows the change of the loss of the generator and 

discriminator of GAN with the increase of training rounds, in which the abscissa is the training round 

and the ordinate is the loss value. It can be seen that with the increase of training times, both of them 

gradually change to the ideal state and finally in the dynamic equilibrium state, which shows that the 

improvement of GAN by using Wasserstein distance and gradient constraint has good effect, the 

model is easier to converge and the stability is increased. 

 

 

Fig.5 Generator’s loss curve and Discriminator’s loss curve 
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Taking the average unbalance rate of 14.30 as the standard, the samples of fault state f1, f2, f3, f4, f5 

of yaw system are enhanced by trained GAN model. Taking F1 as an example, the active power 

characteristics of generator are selected for sample visualization and compared with actual samples, 

as shown in Figure 6. 

 

Fig.6 Comparison between real samples and synthetic samples 

 

It can be seen from the figure that after 2000 rounds of training, the samples generated by the 

generator and the real samples have the same trend, but there are differences in amplitude, indicating 

that the samples generated by the improved GAN have diversity. 

After the fault samples are generated by GAN, the synthesized samples are combined with the original 

training set as the enhancement training set, and the dimension reduction is carried out by SSAE. The 

dimension reduction visualization is shown in Fig. 7. The dimension reduced data is input into the 

Extremely Randomized Trees for fault diagnosis. The forest scale of the algorithm is 200, the depth 

of decision tree is 12, and the weight is 1, 3, 2, 5, 2.5 respectively. Table 3 and table 4 show the 

confusion matrix of test set classification before and after balance. 
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Fig.7 Data dimensionality reduction visualization 

Table 3 Confusion matrix of experimental results(before) 

Diagnosis 

Real 
f0 f1 f2 f3 f4 f5 

f0 730 0 6 5 7 0 

f1 1 54 0 0 0 0 

f2 9 0 60 0 0 0 

f3 5 0 3 56 1 0 

f4 1 0 0 0 47 0 

f5 9 0 0 0 30 0 

 

Table 4 Confusion matrix of experimental results(after) 

Diagnosis 

Real 
f0 f1 f2 f3 f4 f5 

f0 751 0 0 2 2 0 

f1 0 55 0 0 0 0 

f2 0 0 69 0 0 0 

f3 0 0 0 64 0 0 

f4 0 0 0 0 48 0 

f5 0 0 0 0 0 39 

 

It can be seen from table 4 that the misdiagnosis rate before balance is relatively high, especially the 

state f5 is all misdiagnosed, and the classification effect has a large deviation; after the class balance 

by GAN, it can be found from table 5 that although there are still some misdiagnosis cases before the 

balance, the misdiagnosis situation has been greatly reduced. The specific performance is that the 

state f1 ~ f5 can be fully diagnosed, and the state f1 is also greatly improved. This shows that the 

proposed method has good performance in fault diagnosis of wind turbine yaw system. 

In order to further illustrate the advantages of this method, three traditional oversampling methods, 

SVM, KNN and CNN, are selected for comparative experiments, and comprehensive evaluation is 

made by three evaluation indexes, namely Precision, F1-score and G-mean. The above methods are 

all carried out in the same experimental environment, and the average non-equilibrium rate of 14.30 
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is taken as the index of sample generation. Table 5 shows the comparison of fault diagnosis results 

under different methods. 

 

Table 5 Comparison of fault diagnosis results under different over-sampling methods 

Algorithm name Precision F1-score G-mean 

original 0.7179 0.7833 0.7430 

GAN-SVM 0.7830 0.7722 0.7841 

GAN-KNN 0.8857 0.8853 0.8866 

GAN-CNN 0.9073 0.9288 0.9303 

this paper 0.9884 0.9936 0.9937 

 

As can be seen from table 5, compared with the original data set, the classifier performance after class 

sample balancing has been improved. Among them, the precision rate, F1 score and g-mean of CNN 

algorithm are improved by 26.39%, 18.58% and 25.22% respectively; KNN algorithm is improved 

by 23.38%, 13.02% and 19.34% respectively; SVM algorithm has the lowest improvement in this 

data set, and the three indicators are improved by 9.07%, - 1.42% and 5.54% respectively; and the 

Extremely Randomized Trees algorithm trained by SSAE algorithm has the most performance 

improvement, 67%, 26.85% and 33.75% respectively. Therefore, compared with the traditional 

machine learning method, the WGAN-SSAE-ET model proposed in this paper can better solve the 

problems of sample class imbalance and high latitude of SCADA data attributes in wind turbine fault 

diagnosis. 

5. Conclusions 

Aiming at the problem of unbalanced fault data and high data dimension of wind turbine, a new fault 

diagnosis model of wind turbine based on WGAN-SSAE-ET is proposed in this paper. The WGAN 

neural network is used to learn the real distribution of fault samples, generate composite samples that 

conform to the fault change rules, and enhance the original sample set. It not only retains the detection 

accuracy of most types of data samples, but also improves the diagnostic accuracy of a small number 

of samples In the Extremely Randomized Trees algorithm, each decision tree makes a vote to decide 

the abnormal category. The experimental results show that the Extremely Randomized Trees fault 

diagnosis model of WGAN-SSAE is better than SVM, KNN and CNN algorithm. The problem of 

class imbalance and high dimensional data in the process of wind turbine fault diagnosis is effectively 

solved. 
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