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Abstract 

In this paper, we consider the new facility location problem in a general network with positive 

edge lengths and determined vertex weights. There are some facilities in the network already, 

we intend to minimize the maximum load in the facilities by adding a new facility. Based on the 

proximity principle and the rule of critical points, the continuous infinite points on the network 

graph can be discretized into finite candidate points, denoted as P, and a polynomial algorithm 

with a time complexity of O(mn2) is designed. Finally, a numerical example is given. 
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1. Introduction 

With the continuous growth of population, public facilities or chain facilities in cities are often 

overcrowded. For example, in large hospitals, people spend a long time in medical treatment and 

doctors are exhausted due to overwork at the same time, so the layout and planning of the original 

service facilities can no longer meet social needs. Because the original facilities are affected by 

geography and other factors, it is difficult to solve the contradiction by modifying the existing 

facilities, so the load of the facilities can only be reduced by adding similar facilities. How to 

minimize the maximum load of all similar facilities by planning the location of new facilities in the 

existing environment becomes an urgent problem to be solved. 

The classical location problem includes three major theories: center [1], median [2] and cover [3]. On 

this basis, through the continuous expansion of scholars, derived a variety of variation problems, such 

as the center-median [4] problem, the gradual coverage problem [5] and so on. An implicit assumption 

in the above literature is that no other facilities exist in the environment or the influence of existing 

facilities on the location of new facilities is ignored at the time of location. When same type facilities 

already exist in the environment, the method by adding new facilities is called new facility location. 

In the existing studies, there are two types of new facility location according to location objectives, 

one is the model of competitive facility location, the other is the conditional location problem. The 

competitive facility location is to maximize the market share of its own chain facilities by adding new 

facilities when there are competitors in the market. Drezner [6] used computer simulation to study 

the competitive facility location of a single new facility in the plane. Fernandez et al. [7] compared 

and analyzed the advantages and disadvantages of the heuristic algorithm and the global optimization 

technology for single competitive facility location in the plane. Blanquero et al. [8] studied the model 

of a single competitive facility location in the network graph under gravity rules, and proposed a 

branch and bound algorithm based on interval analysis and DC optimization. Grohmann et al. [9] 

used meta-heuristic algorithm and nonlinear optimization method to solve the location problem of 

multi-competing facilities in the network. Different from the objective of competitive facility location, 

the conditional location problem aims to achieve the same optimization objective as the classical 

location problem (such as minimizing the maximum weighted distance, minimizing the sum of 

distance, etc.) by finding location for new facilities. The term “condition” refers to conditions in 

which similar facilities already exist in the environment. In the existing literature, Lin [10] and 

Handler et al. [11] first studied the conditional location problem. Minieka [12] expanded the 

unconditional single facility location problem and studied various conditional 1-center problems and 
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conditional 1-median problems in the network. Berman and simchi-levi [13] solved the conditional 

p-median and p-center problem in the network graph by solving the unconditional (p+1)-median or 

(p+1)-center problem. Compared with the methods of Berman and simchi-levi [13], Berman and 

Drezner [14] proposed a simpler solution algorithm only by modifying the distance matrix. For 

continuous and discrete conditional p-center problem, Chen et al. [15] proposed a new relaxation 

algorithm. Kaveh and Nasr [16] used the improved harmony search algorithm (meta-heuristic 

algorithm) to apply the conditional p-center location to the actual location problem. 

In the existing literature, the new facility location is either aimed at optimizing the distance or aimed 

at maximizing the profit of facilities. In this paper, the load level of the maximum load facility in the 

facilities is considered. By adding a new facility in the network, the load of the maximum load facility 

in all the facilities is minimized. 

2. Models and Definitions 

Urban traffic map can be abstracted as an undirected connected simple network graph G, G=(V,E), 

where V={v1,v2,...vn} is the set of vertices and E={e1,e2,...,em} is the set of edges, representing 

population gathering point (demand point) and highway respectively. We use the notation wi to denote 

the weight of each vertex vi∈V, |V|=n. Each edge e∈E is associated with a positive number l(e) 

(called the length of e), |E|=m. We also use the notation G to denote the set of all points on G. The 

distance between any two points x and y on G, which is represented by d(x,y) (note that d(x,y) = 

d(y,x) ), is the length of the shortest path on G from x to y. In this paper, as in most previous studies, 

we assume that the distance between any two vertices is known. 

In the network G, there are already r same type old facilities F={f1,f2,...,fr}, providing the similar 

service or selling the same commodity. X={x1,x2,...,xr} corresponds to the location of facility F in G, 

and each demand point follows the “proximity principle” to go to the corresponding facilities to 

receive service. The distance from point vi to facility F is expressed as 

1
( , ) min ( , )i i k

k r
d v F d v f

 
=                            (1) 

d(vi,fk) represents the shortest distance from demand point vi to facility fk. The nearest facility of point 

vi is expressed as 
*

1
arg min ( , )i i k

k r
f d v f

 
=                             (2) 

Note that fi
* represents the nearest facility or one of the nearest facilities from point vi. If a demand 

point corresponds to multiple nearest facilities at the same time, then the weight of the demand point 

is evenly distributed to multiple facilities. Such demand points are called “evenly distributed demand 

points”. The set of demand points served by facility fk is expressed as 

 *|k i k iV v V f f=  =                             (3) 

The load of this facility is 

1

k

k i

V i

M w


=                                                           (4) 

Where αi∈N+ is the nearest number of facilities at demand point vi. In this paper, facility capacity 

constraints are not considered, and facility load only represents the degree of busyness and 

crowdedness of the facility. 

The layout of the existing facilities in the network cannot be changed for a long period of time. The 

decision maker plans to change the load status of the existing facilities by adding a new facility fo, 

with the target of minimizing the load of the maximum load facility. After the new facility is added, 

the facility set is expressed as F#={f1,f2,...,fr,fo}. If facility fo is built at a fixed location x, the load of 

the maximum load facility in facilities F# is expressed as 
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1,2... ,
( ) max ( )k

k r o
L x M x

=
=                             (5) 

Where x∈P is the set of candidate points of the newly added facility fo on network G (how to obtain 

the point set P will be given in the next section). Mk(x) represents the load of facility fk when facility 

fo is at location x, fk∈F# . The minimum maximum load objective is as follow 

( ) min ( )opt
x P

L x L x


=                                                             (6) 

L(xopt) is the load of the maximum load facility in the facilities when the new facility fo is in the 

optimal location xopt , xopt∈P. Our target is to find location xopt , where L(x) is the lowest. 

3. Properties and Analysis 

The edge of the network is composed of a series of continuous points, and the number of these points 

is infinite. How to discretize these continuous points into finite points with different properties 

according to the nature of the problem, and make these points represent all the points G is the content 

to be studied in this part. Because of each demand point in the network follows the “proximity 

principle”, the distribution of demand points has nothing to do with the weight of the demand point 

itself, but with the distance from the demand point to the nearest facility. In this paper, the points with 

a distance of βi from point vi on edge of the network are called critical points, denoted by NIP [17]. 

NIPs represents the set of all NIP points in the network. βi is the critical distance of demand point vi , 

which is equal to the distance from the demand point to the nearest old facility. It is also the maximum 

distance that demand point vi is willing to go to the new facility fo. There is  

( , )i id v F =                                                                (7) 

In fact, NIP point is the boundary point defined by demand point vi as the “center” and critical distance 

βi as the “radius”. Because of the existence of network branches, a demand point corresponds to 

multiple NIP points on multiple edges, but a NIP point corresponds to only one specific demand point, 

unless the NIP points of multiple demand points coincide. 

Lemma 1. The total number of NIP points on the network graph is at most O(mn). 

Proof. For a demand point vi∈V，the demand point generally corresponds to only one NIP point on 

a edge. In the special case, there will be two NIP points, where the demand point pass through the 

vertex on both sides of the edge and the shortest distance to the two points on the edge is equal. In 

addition, there is also the case that the critical distance range βi of point vi cannot reach some edges 

on G, where the demand point has no corresponding NIP point on these edges. If a demand point has 

a corresponding NIP point on all the edges of the graph G, since there are m edges on the network, 

then a demand point has at most O(m) NIP points on the network graph. Therefore, all demand points 

V have at most O(mn) NIP points on the network graph. That is, the |NIPs| are at most O(mn). Thus,the 

lemma follows. 

Let all NIPs plus all demand points V definited as NIPS, that is, NIPS=NIP∪V. Then the whole 

network is divided into many small line segments by NIPS and facility points F. A class of line 

segments within the critical distance of one or more demand points is defined as SEC. The line 

segment that is not covered by the critical distance of any demand point is defined as an “invalid 

segment”. Note that both the SEC segment and the “invalid segment” referred to in this paper do not 

contain two endpoints of the segment. 

Lemma 2. The new facility cannot be located within “invalid segment”. 

Proof. Any point in the “invalid segment” exceeds the maximum acceptable distance β of all demand 

points on the network graph. If the new facility fo is located within such a segment, under the 

“proximity principle”, no demand point in the network will go to facility fo to receive services, and 

then the location is meaningless. Thus,the lemma follows. 

According to lemma 2, in addition to the “invalid segment” on the edge, it is also necessary to exclude 

the location X of the existing old facility, because the new facility cannot coincide with the location 
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of the existing facility. Let all “invalid segments” in the network defined as the set U, then G’=G\(U

∪X) is the feasible location range for the new facility. In addition, in order to explain the 

characteristics of some points on a line segment and facilitate the use of the following, the concept of 

“equivalent points” is first introduced, that is, when a new facility moves on a line segment, the 

facilities to which each demand point on the network graph goes remain unchanged, and all points on 

this line segment are called “equivalent points”. 

Lemma 3. All points in a single line segment are "equivalent points". 

Proof. When the new facility fo is built at any point within the SEC segment, the demand points 

corresponding to the critical distance range will go to facility fo to receive services, and the new 

facility fo will “cover” the same demand points. At the same time, the demand points served by the 

facility in {F#\fo} also remain unchanged, that is, if the new facility fo is at any point within the SEC 

segment, it will not change the distribution of all demand points V on the network graph. Therefore, 

the points in the line segment are equivalent points for new facility location. Thus,the lemma follows. 

Different from lemma 3, when the new facility f is built at the end point of the SEC line segment, if 

the end point is NIP point, the distance from the demand point corresponding to NIP to the new 

facility fo is the same as that from the demand point to the previous old facility. This paper adopts the 

rule of equipartition critical point [6,18]. That is, when the new facility is located at the NIP point of 

a demand point, the demand point weight is evenly distributed among all the nearest facilities. Based 

on the critical point rule, the SEC in the network can be divided into two categories. The two ends of 

the SEC segment of the first kind are different NIP points, or one end is NIP point and the other end 

is facility point f. The properties of the inner point and the end point of a line segment are different. 

In the second kind of SEC, at least one endpoint is demand point v, and the inner point of such a line 

segment has the same property as demand point v. Here, the “property” is reflected in the different 

load of the new facility at different locations. 

Through the above analysis, the entire network can be composed of NIPS point, facility point F, SEC 

segment and “invalid segment”. Taking the midpoint of the first kind of SEC line segment as the 

representative point of the SEC segment, called MP point, and represent all “equivalent points” in the 

SEC segment. Let all MP points on the network graph are denoted as MPs. For the second kind of 

SEC, the demand point v at one end represents the point v itself and the inner point of the SEC. From 

the perspective of facility location effect and function, point set (NIPS\X) and point set MPs are 

candidates for new facility. So here's the definition P=(NIPS\X)∪MPs. The original location range 

G’ is “equivalent” to point set P, P∈G’. Then the continuous points on the edge of the network are 

discretized into finite candidate points with different properties. 

We have obtained the set of candidate points, so the steps of the NFL(new facility location) algorithm 

can be summarized as follows. 

Step 1. Determine the point set NIPs, and form the point set NIPS with the demand points V. 

Step 2. Determine the point set MPs, and then determine the candidate points P. 

Step 3. Calculate the load of each facility when the new facility fo is built at point x∈P and determine 

the maximum load facility. 

Step 4. Repeat Step3 to determine the maximum load facility of each candidate point in P. 

Step 5. By comparation, the candidate point corresponding to the maximum load facility with 

minimum load is the optimal location xopt. 

Theorem 1. If the weight of each demand point is a given value, the time complexity of the NFL 

algorithm is O(mn2). 

Proof. According to the previous discussion, Step 1 takes O(mn) time, Step 2 takes O(mn) time. Using 

equations (1) to (5), Step 3 takes O(n) time. The algorithm complexity of Step4 is O(mn2), the 

algorithm complexity of Step4 is O(mn). Therefore, the time complexity of the whole algorithm is 

O(mn2). 
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Theorem 1 shows that the problem of minimizing the maximum load can be solved in time O(mn2). 

4. Numerical Example 

The network graph G is shown in figure 1. There are already two facilities f1 and f2 in the network, 

which need to serve 12 demand points. The weight of each demand point is w1=6, w2=5, w3=8, w4=7, 

w5=10, w6=6, w7=7, w8=5, w9=9, w10=9, w11=11, w12=5. The length of each edge is given in the 

network. The decision maker intends to build a new facility fo to alleviate the overloading of existing 

facilities. 

 

Figure 1. An example of network G 

According to the NFL algorithm, the location steps for a new facility are as follows. 

Step 1. All NIP points are marked with hollow dot in the graph G. The demand point set V plus the 

NIPs point set forms the NIPS point set.  

Step 2. All MP points are marked with black dot in the graph G. Therefore, the candidate point of the 

new facility is the sum of all the hollow dot, the black dot and the demand point in the network. 

Step 3. According to “proximity principle”, if the new facility is built at point v1, then the load of each 

facility is Mo=32, M1=17, M2=39. The maximum load facility is f2 . 

Step 4. By repeating step 3, we can obtain the load of the maximum load facility when new facility 

at different candidate points, as shown in the table 1. 

Step 5. By comparing the calculation results in table 1, the candidate point corresponding to the 

minimum “maximum load” value is v6. So v6 is the optimal location for the new facility fo . 

Table 1. The maximum regret values 

Candidate 

point 

Maximum 

load 

Candidate 

point 

Maximum 

load 

Candidate 

point 

Maximum 

load 

Candidate 

point 

Maximum 

load 

v1 39 NIP9 39 v4 34 MP19 42 

NIP1 39 MP7 39 MP14 37 NIP26 40.5 

MP1 39 NIP10 34.5 NIP18 39.5 NIP27 39 

v2 36.5 v6 30 v8 42 MP20 42 

NIP2 39 NIP11 32 NIP19 39.5 NIP28 42 

MP2 39 MP8 36 MP15 44 v12 42 

NIP3 39 NIP12 36 NIP20 31.5 NIP29 42 

v3 39 v7 36 v9 49 MP21 42 
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NIP4 39 MP9 39 MP16 49 NIP30 40.5 

MP3 39 NIP13 39 NIP21 45.5 NIP31 40.5 

NIP5 39 NIP14 39.5 MP17 42 MP22 42 

MP4 43 MP10 44 NIP22 40.5 NIP32 45.5 

NIP6 39 NIP15 47 v11 44 MP23 49 

v5 39 MP11 50 NIP23 36 NIP33 45.5 

NIP7 39 NIP16 36 v10 36 MP24 42 

MP5 39 MP12 36 NIP24 36 NIP34 42 

NIP8 39 NIP17 36 MP18 43 \ \ 

MP6 39 MP13 34 NIP25 40 \ \ 

5. Conclusion 

In this study, we have considered the new facility location problem in a general network. The 

objective is to minimize the maximum load of all similar facilities by planning the location of a new 

facility. Our study provides a novel idea for the location of public facilities in cities, such as hospital, 

which has certain theoretical and practical significance. In the future study, the facility location 

problem in uncertain environment can be further considered. 
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