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Abstract 

Cognitive diagnosis is a fundamental problem in intelligent education, which aims to discover 

students' proficiency in specific knowledge concepts. Existing DINA cognitive diagnostic 

models have the advantages of high diagnostic accuracy and strong interpretability and have 

attracted the attention of a large number of relevant personnel. And most of the current CD-

CAT systems use the DINA model as a diagnostic model. However, the DIAN model only 

performed simple 0-1 classification of the potential knowledge status of the subjects, which 

limited the application of the DINA model to multi-level scoring materials and also limited the 

use of CD-CAT in the field of education. Based on the DINA model, we propose a T-DINA 

model that is suitable for multi-level scoring data. And we implemented the parameter 

estimation program of the improving based the EM algorithm. The experimental results show 

that the T-DINA model has the characteristics of easy parameter estimation and high diagnostic 

accuracy. 
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1. Introduction 

Cognitive diagnosis is a new method combining cognitive discipline and psychometric 

measurement[9]. It uses computers as the primary research tool to explore the cognitive processes 

and results of participants. The performance of the cognitive diagnostic model determines the 

predictive performance of CD-CAT. DINA model as a representative of cognitive diagnostic models 

has attracted the attention of many researchers due to its simple and precise mathematical definition, 

easy estimation of model parameters, and high interpretability. However, the traditional DINA model 

is only suitable for 0-1 second-level scoring data, which has poor compatibility with response data, 

which limits the practical application of the DINA model in the field of CD-CAT and cognitive 

diagnosis. The development of multi-level DINA models or other multi-level Cognitive diagnostic 

models has become an urgent need in the current field of cognitive diagnostics. 

2. Literature Review 

Cognitive diagnostic assessment(CDA)[3]  was born in 1980.As of 2007, researchers have proposed 

more than 60 cognitive diagnostic models[5]. These cognitive diagnostic models had derived from 

the linear logistic trait model (LLTM)[4] proposed by Fisher and the rule space methodology 

(RSM)[11] proposed by Tatsuoka. Other cognitive diagnostic models, such as DINA (deterministic 

inputs, noisy “and” gate) model[7], HO-DINA (higher-order deterministic inputs, noisy “and” gate)[2] 

model, NIDA (noisy inputs, deterministic and gate) model, fusion model, GDM model (general 

diagnostic model)[6], GDM model (general diagnostic model)[12], etc. Besides, the Neural Cognitive 

Diagnosis Model (Neural CDM) based on deep neural networks has been born in the past two 

years[13]. 

Wang, Liu et al[13] proposed a general neurocognitive diagnostic framework. This framework 

automatically generates item response functions through deep learning and projects students and 

exercises into factor vectors. In the experiments, good results had achieved.  Although the framework 

relies on the monotonic hypothesis of educational psychology, the item response function generated 
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by the neural network has certain interpretability. However, compared with traditional cognitive 

diagnostic models, the interpretability of neurocognitive diagnostic models still has a large gap. 

Moreover, the comparative experiment of this model was still based on the idea of item response 

theory, and it compares merely the single scores of the participants, not the model accuracy rate. De 

la Torre[1] developed the parameter estimation procedures for the DINA and HO-DINA models 

based on the EM algorithm (expectation-maximization algorithm) and MCMC algorithm (Monte 

Carlo simulation and Markov Chain), and also gave the EM algorithm in DINA Derivation process 

in the model. At the same time, verification experiments prove that the EM algorithm and MCMC 

algorithm can be used as parameter estimation algorithms for cognitive diagnosis models. 

3. DINA Model 

3.1 Mathematical Definition 

The mathematical expression of the DINA model is: 

𝑃(𝑌𝑖𝑗 = 1|𝛼𝑖) = (1 − 𝑠𝑗)
𝜂𝑖𝑗

𝑔𝑗
1−𝜂𝑖𝑗 (1) 

Equation 1 is also called the item response function of the DINA model. It describes the relationship 

between the probability that the subject i correctly answers the item j, the knowledge state 𝛼𝑖 

(attribute mode), and the item j parameters. 𝑌𝑖𝑗 is the response data of the subject i to the item j, 

indicating whether the subject i responded correctly to the item j: 𝑌𝑖𝑗 = 0 indicates that the answer 

was incorrect, and 𝑌𝑖𝑗 = 1  indicates that the answer was correct. $\alpha_{i}$ represents the 

knowledge state of subject i. For items that examine K attributes, 𝛼𝑖 = (𝑎1, 𝑎2, … , 𝑎𝑘−1, 𝑎𝑘)，𝑎𝑖 ∈
{0,1}：𝑎𝑖 = 1 represents the subject grasp of all attributes of item j, otherwise it is not grasped. 

𝑃(𝑌𝑖𝑗 = 1 | 𝛼𝑖) is a posterior probability, which refers to the probability that the knowledge state of 

subject i is 𝛼𝑖, and subject i correctly answer the item j. 𝜂𝑖𝑗  is an indicator parameter, describing 

whether the subject i has all the knowledge (attributes) of item j's investigation: 

𝜂𝑖𝑗 = ∏ 𝛼𝑖𝑘
𝑞𝑗𝑘

𝐾

𝑘=1

(2) 

𝑞𝑗𝑘  in equation 2 represents the relationship between item j and attribute k, and 𝛼𝑖𝑘  represents the 

relationship between subject i and attribute k. 𝛼𝑖𝑘 ∈ {0,1}, 𝑞𝑗𝑘 ∈ {0,1}, 𝛼𝑖𝑘 =1 indicates that the 

subject i has grasped the attribute k. Otherwise it is not grasped; 𝑞𝑗𝑘=1 indicates that the item j has 

inspected the attribute k. Otherwise it has not been inspected. 𝜂𝑖𝑗 ∈ {0,1} , which includes the 

relationship between subject i and item j. 𝜂𝑖𝑗 = 1 indicates that subject i has grasped all the attributes 

of item j, and 𝜂𝑖𝑗 = 0 indicates that subject i do not master all properties in item j.  

The error parameter 𝑠𝑗 for item j in equation 2 represents the probability that the subject answer the 

item j incorrectly under the premise of mastering all the attributes examined by the item j, which can 

be express as: 

𝑠𝑗 = 𝑃(𝑌𝑖𝑗 = 0 | 𝜂𝑖𝑗 = 1) (3) 

The guess parameter 𝑔𝑗 for item j in equation 2 indicates that the subject does not fully grasp the 

attributes examined by item j, but the probability of correctly answering item j can be express as: 

𝑔𝑗 = 𝑃(𝑌𝑖𝑗 = 1 | 𝜂𝑖𝑗 = 0) (4) 

3.2 Advantages and Disadvantages 

The mathematical definition of the DINA model is concise and clear. It assumes that each test 

attribute is independent, and there is no compensation effect. That is, to correctly answer the test item, 

the test subject must master all the attributes contained in the test item. Therefore, in the hypothesis 

of the DINA model, the potential knowledge status of the subjects was classified 0-1: mastering all 

the attributes investigated by the project, and at least one of the attributes investigated did not master. 
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That leading the subjects to a single test item only have two probabilities of correct answers: the 

probability of mastering all the attributes measured by the project without errors (1 − 𝑠𝑗), and the 

probability of not knowing all attributes of the projects but correct answering by guessing 𝑔𝑗. 

The DINA model's assumptions about the knowledge state of the subjects are too simple. For a project 

examining the number of is K=5, the subjects who do not grasp one attribute and the subjects who 

have grasped the four attributes both answer correctly with the same guess probability 𝑔𝑗. In fact, in 

most cases, the more the subject grasp the attributes of the project, the higher the probability of correct 

responses. For example, there is an actual fractional subtraction item 3
4

5
− 3

2

5
. This item examines 

two attributes, attribute 1 is the basic fraction subtraction, and attribute 2 is the separation of integers 

from the score. Suppose there are two types of subjects answering this item. The first type of subjects 

have grasped attribute 1 but not attribute 2; the second type of subjects did not grasp both attributes. 

According to the DINA model, the two types of subjects answered correctly with the same probability. 

However, the probability of correct answer is higher in the first category than in the second 

category[8]. Studies by Sinharay[10], Fu[5], and others have shown that there is a significant 

difference in the probability of correct responses between participants who have grasped some 

attributes and those who do not have one attribute. 

4. T-DINA Model 

4.1 Mathematical Definition 

The potential knowledge status of the subject are too simple in DINA model, especially the 

knowledge status of the subject is only final 0-1 classification. In fact, the number of subjects who 

had not grasped one attribute is tiny. Most of them are grasped at least one attribute of the project 

investigation. In view of this, this study proposes an improved T-DINA model based on the DINA 

model. This model assumes that subjects with different knowledge states have a total of three different 

probabilities of correctly answering the questions. These three probabilities correspond to the 

potential of the T-DINA model to the subjects. Three divisions of knowledge state: fully grasp the 

measured attributes of the project, partially grasp the measured attributes of the project, and entirely 

not grasp the measured attributes of the project. In the T-DINA model, fully grasping the measured 

attributes of the project means that the subject has grasped all the attributes measured by the project. 

Partially grasping the attributes of the project means that the subject has grasped at least one but not 

all of the attributes measured by the project. Completely not grasping the measured attributes of the 

project means that the subjects did not grasp any of the measured attributes of the project. 

The mathematical expression of the T-DINA model is: 

𝑃(𝑌𝑖𝑗 = 1 | 𝛼𝑖) = (1 − 𝑠𝑗)
𝜂𝑖𝑗

𝑔𝑗
𝛾𝑖𝑗𝑐𝑗

𝜆𝑖𝑗 (5) 

among them: 

𝜂𝑖𝑗 = ∏ 𝛼𝑖𝑘
𝑞𝑗𝑘

𝐾

𝑘=1

(6) 

𝛾𝑖𝑗 = {
1 𝑖𝑓 𝛼𝑖𝑞𝑗 = 0

0 𝑖𝑓 𝛼𝑖𝑞𝑗 ≠ 0
(7) 

𝜆𝑖𝑗 = {
1 𝑖𝑓 𝛼𝑖𝑞𝑗 ≠ 0 and 𝜂𝑖𝑗 = 0

0 𝑖𝑓 𝛼𝑖𝑞𝑗 ≠ 0 and 𝜂𝑖𝑗 = 1
(8) 

𝑠𝑗 = 𝑃(𝑌𝑖𝑗 = 0 | 𝜂𝑖𝑗 = 1, 𝛾𝑖𝑗 = 0, 𝜆𝑖𝑗 = 0) (9) 

𝑔𝑗 = 𝑃(𝑌𝑖𝑗 = 0 | 𝜂𝑖𝑗 = 0, 𝛾𝑖𝑗 = 1, 𝜆𝑖𝑗 = 0) (10) 

𝑐𝑗 = 𝑃(𝑌𝑖𝑗 = 0 | 𝜂𝑖𝑗 = 0, 𝛾𝑖𝑗 = 0, 𝜆𝑖𝑗 = 1) (11) 
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𝑃(𝑌𝑖𝑗 = 1 | 𝛼𝑖) in formula 5 refers to the probability that the subject i with knowledge state 𝛼𝑖 

correctly answers the item j. Let 𝛼𝑖 = (𝛼𝑖1, … , 𝛼𝑖(𝐾−1), 𝛼𝑖𝐾), 𝜂𝑖𝑗  , 𝛾𝑖𝑗  and 𝜆𝑖𝑗 describe the potential 

knowledge status of subject i's investigation attributes relative to item j. 𝛼𝑖𝑞𝑗 is the inner product of 

the attribute vector of subject i and the attribute vector examined by item j. 𝜂𝑖𝑗 = 1 means that subject 

i has grasped all the attributes of item j, and will correctly answer item j with a probability of (1 − 𝑠𝑗). 

𝛾𝑖𝑗 = 1 means that subject i has not grasped all the attributes of item inspection and will use 𝑔𝑗 

probability answer item j correctly. 𝜆𝑖𝑗 = 1 means that the subject i has the attributes of the item 

inspection, and will answer the item j correctly with the probability of 𝑐𝑗. In the T-DINA model, 𝑐𝑗 is 

a speculative parameter, which represents the probability that the subject will correctly answer the 

item on the premise that has partially grasped the attributes of the item investigation. 𝜂𝑖𝑗 , 𝛾𝑖𝑗  and 𝜆𝑖𝑗 

can only have one equal one at the same time, and the others are 0. It is important to note that if only 

two attributes are examined in project j, then the T-DINA model will degenerate into the DINA model. 

In this case, the 𝜆𝑖𝑗 parameter does not exist, and the T-DINA model and the DINA model are equal. 

Under the assumption that the project response is locally independent, the likelihood function of the 

T-DINA model is consistent with the likelihood function of the DINA model as: 

𝐿(𝑠, 𝑔; 𝛼) = ∏ ∏ {𝑝𝑗(𝛼𝑖)𝑌𝑖𝑗[1 − 𝑝𝑗(𝛼𝑖)]
1−𝑌𝑖𝑗}

𝑚

𝑗=1

𝑁

𝑖=1

(12) 

In formula 12, N is the number of subjects, m is the number of attributes examined by item j. 𝑝𝑗(𝛼𝑖) 

represents the probability that subject i will correctly answer item j on the premise that the knowledge 

state is 𝛼𝑖 . 𝑌𝑖𝑗  represents the result of the subject i answered the item j. 𝑌𝑖𝑗 = 1 indicates that the 

answer is correct. Otherwise, it is incorrect. 

Under the assumption of the T-DINA model, it is necessary to estimate an extrapolated parameter c 

more than the DINA model for items with more than two attributes under consideration. Therefore, 

this model is more complicated than the traditional DINA model. 

5. EM Algorithm Derivation Formula 

Propose a cognitive diagnostic model, and its parameter estimation procedure must be implemented. 

Otherwise, it has only theoretical significance and cannot be applied to practice.Based on the EM 

algorithm, we implement the parameter estimation procedure of the T-DINA model according to the 

following formula: 

𝑠𝑗 =
𝐼𝑗𝑙

(0)
− 𝑅𝑗𝑙

(0)

𝐼𝑗𝑙
(0)

(13) 

𝑐𝑗 =
𝑅𝑗𝑙

(1)

𝐼𝑗𝑙
(1)

(14) 

𝑔𝑗 =
𝑅𝑗𝑙

(1)

𝐼𝑗𝑙
(1)

(15) 

𝐼𝑗𝑙
(0)

 represents the expectation of the number of subjects who have grasped all the test attributes of 

item j among all the participants. 𝑅𝑗𝑙
(0)

 represents the expectation of the number of participants who 

have grasped all the test attributes of item j and answered correctly. 𝐼𝑗𝑙
(1)

 represents the expectation of 

the number of participants who have grasped the properties measured by item j among all the 

participants. 𝑅𝑗𝑙
(1)

 represents the expectation of the number of participants who have grasped the 

measured attributes of item j and answered correctly in all the participants. 𝐼𝑗𝑙
(2)

 represents the 
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expectation of the number of subjects who have grasped the measured attributes of 0 items j among 

all the subjects. 𝑅𝑗𝑙
(2)

 represents the expectation of the number of correctly answered attributes of 0 

items j among all the participants. 

6. Parameter Estimation Experiment 

6.1 Experimental Data 

Simulation conditions similar to de la Torre[1] were used.There are 30 test items and 5 test attributes. 

The Q matrix is shown in Table 1. The shape is 30 rows and 5 columns. The five attributes have 32 

combined states. We simulate 30 subjects for each combined state, a total of 1920 subjects. Fix s = 

0.2, c = 0.3, and g = 0.1 for each item. A total of 100 experiments were performed, and the average 

value was used as the final result. 

Table 1. Q-Matrix for the Simulated Data 

Item 
Attribute 

 
Attribute 

1 2 3 4 5 Item 1 2 3 4 5 

1 1 0 0 0 0 16 0 1 0 1 0 

2 0 1 0 0 0 17 0 1 0 0 1 

3 0 0 1 0 0 18 0 0 1 1 0 

4 0 0 0 1 0 19 0 0 1 0 1 

5 0 0 0 0 1 20 0 0 0 1 1 

6 1 0 0 0 0 21 1 1 1 0 0 

7 0 1 0 0 0 22 1 1 0 1 0 

8 0 0 1 0 0 23 1 1 0 0 1 

9 0 0 0 1 0 24 1 0 1 1 0 

10 0 0 0 0 1 25 1 0 1 0 1 

11 1 1 0 0 0 26 1 0 0 1 1 

12 1 0 1 0 0 27 0 1 1 1 0 

13 1 0 0 1 0 28 0 1 1 0 1 

14 1 0 0 0 1 29 0 1 0 1 1 

15 0 1 1 0 0 30 0 0 1 1 1  

6.2 Metrics 

ABSE reflects the degree of absolute deviation between the parameter estimate and the true value. 

The smaller the value, the more accurate the estimate, and it can examine the return to trueness or 

accuracy of the parameter estimate. ABSE mainly examines the trueness of the project parameters (s, 

c, g) in the experiment, and its calculation formula: 

𝐴𝐵𝑆𝐸 =
∑ |𝑦𝑖 − 𝑦�̂�|

𝑁
𝑖=1

𝑁
 

N refers to the number of experiments. In this experiment, 100 experiments were simulated in 1920 

subjects, N=100. 𝑦𝑖  represents the true value of the parameter to be estimated, and 𝑦�̂� represents the 

estimated value of the parameter. 

RMSE is the square root of the mean of the sum of the squared deviations of the true and estimated 

values in multiple experiments. It is particularly sensitive to a set of observed values that are too large 

or too small, and can well reflect the stability of the parameter estimation program. A smaller value 

indicates a more stable parameter estimation program. In this experiment, for 100 batches of different 

data to estimate the project parameters, RMSE can well reflect the stability of the EM estimation 

program. The calculation formula is as follows: 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦�̂�)2

𝑁

𝑖=1
 

PMR(Pattern Match Ratio) represents the percentage of subjects who have correctly diagnosed the 

knowledge status of the subjects in the total number of subjects. It is a crucial evaluation indicator of 

the accuracy of the cognitive diagnosis model. The higher the value, the more accurate the model 

diagnosis is. In the field of cognitive diagnostic theory, PMR can examine the truthfulness of project 

estimation procedures. Calculated as follows: 

𝑀𝑀𝑅 =
𝑁𝑝

𝑁
 

𝑁𝑝 refers to the number of subjects correctly diagnosed by the model (each attribute of the subject 

was diagnosed correctly), and N represents the total number of subjects. 

MMR(Marginal Match Ratio) refers to the accuracy rate of a single attribute: 

𝑀𝑀𝑅 =
1

𝐾
∑ 𝑀𝑀𝑅(𝑘)

𝐾

𝑘=1
=

1

𝐾
∑

𝑛𝑘

𝑁

𝐾

𝑘=1
 

K is the number of test attributes, 𝑛𝑘 represents the number of subjects with a correct diagnosis of the 

kth attribute, and N represents the total number of subjects. 𝑀𝑀𝑅(𝑘) represents the accuracy rate of 

the kth attribute, and MMR is the average of the accuracy rates of all attributes. 

6.3 Experimental Results and Discussion 

Table 2 is the estimation result of the parameters of the T-DINA model project, where "-" indicates 

that the item does not have corresponding parameters. For example, item 1 only examines one 

attribute and has only two states of complete mastery and no mastery at all. Therefore, the c parameter 

of this project is "-", which means that some of the potential knowledge states of the project's 

investigation attributes do not have this state. The results show that the average of the project 

parameters obtained by 100 repeated simulation estimates is very close to the true value. The average 

values of the project parameters of the 30 projects are 0.2003, 0.1002, and 0.2991, which are close to 

the project's true values of 0.2000, 0.1000, and 0.3000. 

The ABSE of most project parameters is below 0.02, the ABSE of the inferred parameter c is 

significantly smaller than the ABSE of the incorrect parameter and the guessed parameter. The RMSE 

of the project parameters is similar to that of ABSE. The RMSE of the inferred parameter is 

significantly smaller than the RMSE of the incorrect parameter and the guessed parameter. 

Table 2. T-DINA Model EM Algorithm Project Parameter Estimation Results 
 

Standard Error 

Item 
Mean Estimate ABSE RMSE 

s g c s g c s g c 

1 0.2012 0.1010 - 0.0124 0.0092 - 0.0152 0.0119 - 

2 0.2009 0.0992 - 0.0115 0.0097 - 0.0143 0.0119 - 

3 0.1983 0.0980 - 0.0126 0.0089 - 0.0164 0.0115 - 

4 0.1996 0.0970 - 0.0120 0.0102 - 0.0152 0.0128 - 

5 0.2023 0.0989 - 0.0117 0.0099 - 0.0145 0.0120 - 

6 0.2029 0.1016 - 0.0128 0.0083 - 0.0158 0.0099 - 

7 0.2018 0.1015 - 0.0119 0.0090 - 0.0148 0.0111 - 

8 0.2004 0.1012 - 0.0118 0.0098 - 0.0148 0.0124 - 

9 0.2037 0.1013 - 0.0109 0.0096 - 0.0138 0.0120 - 

10 0.2010 0.1011 - 0.0114 0.0097 - 0.0140 0.0122 - 

11 0.2002 0.0985 0.3004 0.0161 0.0138 0.0118 0.0202 0.0175 0.0142 



International Journal of Science Vol.7 No.4 2020                                                             ISSN: 1813-4890 

 

214 

 

12 0.1981 0.0970 0.2977 0.0158 0.0139 0.0129 0.0199 0.0173 0.0164 

13 0.2025 0.1001 0.2988 0.0183 0.0131 0.0150 0.0226 0.0163 0.0188 

14 0.1979 0.1009 0.3007 0.0165 0.0134 0.0126 0.0209 0.0166 0.0157 

15 0.1999 0.0994 0.2996 0.0181 0.0132 0.0122 0.0221 0.0170 0.0151 

16 0.1985 0.0992 0.2972 0.0166 0.0135 0.0144 0.0210 0.0175 0.0181 

17 0.1973 0.1013 0.2989 0.0178 0.0145 0.0149 0.0222 0.0178 0.0184 

18 0.2005 0.1011 0.2965 0.0169 0.0142 0.0138 0.0209 0.0173 0.0173 

19 0.2018 0.1004 0.2982 0.0183 0.0136 0.0128 0.0226 0.0167 0.0159 

20 0.2048 0.0988 0.2988 0.0188 0.0134 0.0122 0.0221 0.0176 0.0155 

21 0.1958 0.0999 0.3011 0.0274 0.0218 0.0106 0.0325 0.0258 0.0132 

22 0.1965 0.1024 0.3015 0.0226 0.0198 0.0100 0.0281 0.0243 0.0123 

23 0.1987 0.0974 0.2992 0.0206 0.0202 0.0113 0.0253 0.0240 0.0140 

24 0.1978 0.1048 0.2994 0.0273 0.0210 0.0094 0.0350 0.0256 0.0117 

25 0.1987 0.1037 0.2988 0.0225 0.0171 0.0111 0.0286 0.0210 0.0135 

26 0.2018 0.1030 0.2976 0.0241 0.0198 0.0094 0.0297 0.0250 0.0120 

27 0.2040 0.0971 0.2989 0.0255 0.0222 0.0109 0.0325 0.0278 0.0132 

28 0.2014 0.1012 0.3009 0.0208 0.0189 0.0097 0.0262 0.0249 0.0118 

29 0.2013 0.1013 0.2982 0.0228 0.0215 0.0101 0.0298 0.0266 0.0122 

30 0.1995 0.0986 0.2993 0.0249 0.0207 0.0100 0.0314 0.0253 0.0133 

M 0.2003 0.1002 0.2991 0.0177 0.0145 0.0118 0.0221 0.0180 0.0146 

SD 0.0022 0.0019 0.0013 0.0051 0.0046 0.0018 0.0064 0.0056 0.0022 

Table 3 shows the diagnosis results of the subjects' knowledge status. The boundary accuracy rate of 

each attribute of the subjects obtained by 100 repeated simulations reached more than 94%. The 

maximum value is 94.12%, the minimum value is 94.03%, the average value is 94.09%, and the 

average standard deviation is 0.0026. The average value of the pattern accuracy for 100 iterations is 

75.73%, and the standard error is 0.0089. 

Table 3. T-DINA Model Knowledge State Estimation Results 

Repeat Test 

MMR(k) 

MMR PMR 
α1 α2 α3 α4 α5 

M 0.9403 0.9409 0.9414 0.9412 0.9409 0.9409 0.7573 

SD 0.0057 0.0049 0.0051 0.0051 0.0051 0.0026 0.0089 

Table 2 and Table 3 show that the parameter estimation program is accurate and stable for the project 

parameter estimation results of the T-DINA model, the project parameter estimation, and the subject 

knowledge state estimation are good. 

7. Conclusion and Future Work 

This paper proposes a multi-level scoring model T-DINA model based on the DINA model. At the 

same time, the parameter estimation procedure of the T-DINA model is given based on the EM 

algorithm. The final experiments show that the T-DINA model has the advantages of high diagnostic 

accuracy and easy parameter estimation.Our future research on cognitive diagnosis may proceed in 

the following directions:1) Cognitive diagnosis based on neural network. Adaptive learning of general 

item response functions through neural networks.2)Development and research of the CD-CAT system 

using the T-DINA model as a diagnostic model.3) Research on the performance comparison between 

the T-DINA model and other cognitive diagnostic models. 
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