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Abstract 

Fourier ptychography is a recently explored imaging method for overcoming the diffraction 

limit of conventional cameras with applications in microscopy and yielding high-resolution 

images. In order to splice together low-resolution images taken under different illumination 

angles of coherent light source, an iterative phase retrieval algorithm is adopted. However, the 

reconstruction procedure is slow and needs a good many of overlap in the Fourier domain for 

the continuous recorded low-resolution images and is also worse under system aberrations such 

as noise or random update sequence. In this paper, we propose a new retrieval algorithm that 

is based on convolutional neural networks. Once well trained, our model can perform high-

quality reconstruction rapidly by using the graphics processing unit. The experiments 

demonstrate that our model achieves better reconstruction results and is more robust under 

system aberrations. 
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1. Introduction 

In optical imaging system, space-bandwidth product (SBP) is used to characterize the tradeoff 

between high resolution and large field of view [1]. Fourier ptychography (FP) [1] is an effective 

imaging technique that aims to tackle the physical limitation by capturing a sequence of SBP limited 

images and computationally combining them to recover a high resolution, large FOV image. It has 

applications in wide field, high resolution microscopy [1], microscopy biomedical imaging [2], long 

distance, sub-diffraction imaging [3] and other applications.  

The FP method needs acquisition of many SBP limited images which are gained from varying 

illumination angles of coherent light source. Because conventional image sensors can measure only 

intensity information of light, there’s a loss of phase information. As a result, iterative phase retrieval 

algorithm is applied to the recorded set of images to recover the phase information that is lost in the 

imaging process and thus reconstruct a high resolution, high field-of-view image. So far, most FP 

applications [3-6] utilize the Alternating Projection (AP) algorithm [7,8,10] to implement the 

reconstruction process. 

However, the reconstruction quality of iterative phase retrieval algorithms degrades as the overlap 

between the successively captured images in the Fourier domain decreases [9]. Reconstruction under 

less overlap becomes even more challenging for incomplete amplitude and phase information. Hence, 

we need to capture more SBP limited images which not only spans the Fourier domain, but also fulfill 

the needed number of overlap radio. And also, the low reconstruction quality happens as the updating 

sequence for FP is random [10] and the robustness under system aberrations is poor [11]. In this paper, 

we focus on a deep learning-based algorithm in solving inverse retrieval problems for the task of 

phase retrieval in FP. Instead of a phase retrieval algorithm, we propose a Convolutional Neural 

Network (CNN) based method (FPNET) that directly restores the image in the spatial domain without 

explicitly recovering the phase information. CNNs have been demonstrated to provide superior 

performance to solve many challenging imaging problems, such as super-resolution [12,13], 

segmentation [14], deconvolution [15], holography [16], phase recovery [17], etc. 
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We show that FPNET obtains better reconstruction results in case of different overlapping frequency 

bands and case of noisy images and random sequence images. The remainder of the paper is organized 

as follows. In Section 2 we briefly introduce Fourier Ptychography and the AP algorithm, Section 3 

contains our proposed method FPNET. In Section 4 we explain our results and experimental 

evaluation and Section 5 concludes the paper. 

2. Principle of Fourier ptychographic microscopy 

As a classic computational method, the FPM is mainly composed of the forward imaging model and 

the recover process. In the forward imaging model, the sample is illuminated by oblique plane waves 

from the LED matrix, and then the exiting waves are captured by the camera through the objective 

lens. By sequentially illuminating the different LEDs on the matrix, a series of low-resolution 

intensity images are obtained. In recover process, the high-resolution image is reconstructed with the 

low-resolution intensity images 

2.1 Forward imaging model 

In the forward imaging procedure, we denote a thin specimen as its transmission function ( )o r , where 

( , )r x y=  represents the 2D spatial coordinates. Assuming that the LED is far enough away from the 

sample stage, the illumination wave is approximately oblique plane wave. For the nth LED, the wave 

vector can be expressed as  

( )
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where ( )xn yn  represent the illumination angle for the nth LED and λ is the wavelength [10]. Using 

an oblique plane waves with a wave vector n
k  to illuminate the specimen is equivalent to shifting the 

specimen spectrum ( )O k to be centered around n
k , expressed as ( )  ( )( )exp i -o r r O=F n nk k k . The 

field is low-pass filtered by the objective lens with pupil function ( )C k  when passing through the 

objective lens. The forward imaging model of FPM can be denoted as 

( ) ( ) ( )  ( )
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where ( )ncI r  expresses the intensity on sensor, ( )ncg r   expresses the complex field on sensor, 
 

( )-O nk k  expresses the spectrum of the specimen illuminated by a plane wave with a wave vector 

n
k  , ( , )x yk k=k   represents the 2D frequency coordinates and 1−F   denotes the inverse Fourier 

transform. 

2.2 Recovering process 

In recovering process, FP can synthesize those images with different spectral information and get an 

estimation of high-resolution complex field ( ) ( ) 1

e eo r O−= F k . Generally, FP recovers the high-

resolution image through the most classic reconstruction method, termed Alternate Projection (AP), 

which iteratively estimate the complex fields and update them with captured intensity images. One 

iteration can be denoted as  
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Equation (3) is to estimate the high-resolution images corresponding to each illumination and Eq. (4) 

is to update the high-resolution images using the captured low-resolution intensity images [1,10]. The 
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premise of Eqs. (3) and (4) is that in practical applications, the sample should be strictly placed on 

the focal plane and the careful calibration is required [4]. Until the estimated spectrum converges, the 

manipulations in Eqs. (3) and (4) are repeated. The iteration starts from a random guess of ( )neg r . 

At last, by inverse Fourier transforming the estimated spectrum ( )eO k to ( )eo r , the high-resolution 

images are extracted from ( )eo r .  

3. FPM reconstruction framework with FPNET 

We propose a learning-based framework of reconstructing high-resolution image based on U-Net 

architecture [18], which is based on Convolutional Neural Networks. Our model records a non-

linearly end-to-end mapping between the input of low intensity images and original high-resolution 

images. We also describe how to build datasets to train FPNET with FPM imaging model. The low-

resolution images which are gained by using varying illumination angles of a coherent light, serve as 

input data of network.  

3.1  Recovering process 

We need a large training dataset to train the deep neural network and a small test dataset to test the 

network performance. Images in DIV_2K, Set14 and Set5 are used for generating datasets with 

simulations, as the strategies used in many deep learning image reconstruction projects. 800 images 

in DIV_2K are used as train sets and the latter two are used as test sets. The original images are 

converted to grayscale and cropped to w× h pixels, where w = h = 128 pixels. These images represent 

our ground truth data. With the FPM forward imaging model, we use these high-resolution complex 

fields to generate N2(N=5) images with the 32× 32 sized low-resolution intensity input of the model. 

The order of every degraded image sequence is randomly disrupted and then the images are 

concatenated into a 3D-cube of size 32×32×25. Using 800 images in DIV_2K, approximately 30000 

32 × 32 × 25 cubes were extracted to train the FPNET. Data preparation for training also includes 

resizing the cubes spatially to 128×128×25 with the bicubic interpolation algorithm, and performing 

channel wise rescaling to have values between 0 and 1. Similar manipulation is done for the ground 

truth high resolution images. We also create four separate training datasets with the radio 

(0%,18%,40%,65%) of overlapping frequency bands. Gaussian distributed noises with a mean of zero 

and a standard deviation of 0 to 3 × 10-4 is added to the images in the dataset. An example of building 

the training dataset is shown in Fig. 1. 

 

Fig.1. An example of how to build and use the training dataset 
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3.2 Reconstruction with FPNET 

Unlike those iteration-based strategy [10,19], we use DNN to build model and train model to study 

the non-linear relations between input and output on a large-scale dataset. After training the model, 

the DNN can be used for prediction and quickly perform the reconstruction process. 

 We design the FPNET model based on the popular U-Net architecture. Fig. 2 shows a detailed 

diagram of the proposed DNN architecture. At the first layer a 3×3 convolution is used to receive the 

input low-resolution images. The middle layer stack consists of a contracting path (left side) and an 

expansive path (right side). The contracting path follows the typical architecture of a convolutional 

network. It consists of the repeated application of two 3×3 convolutions (padded convolutions), each 

followed by a rectified linear unit (ReLU) and a 3×3 down-convolution with stride 2 for down-

sampling. Every step in the expansive path consists of an up-sampling of the feature map followed 

by a 2×2 up-convolution, a concatenation with the correspondingly feature maps from the contracting 

path, and two 3×3 convolutions, each followed by a ReLU. It is easy to see that a stack of two 3× 3 

conv. layers (without spatial pooling in between) has an effective receptive field of 5×5. We decrease 

about 28% of the number of parameters: assuming that both the input and the output of a two-layer 3 

× 3 convolution stack has C channels, the stack is parameterized by 2× 32C2 = 18C2 weights; at the 

same time, a single 5 × 5 conv layer would require 52C2 = 25C2 parameters, i.e.. At the final layer a 

1×1 convolution is used to map each 64-component feature vector to the desired number of classes. 

In total the network has 28 convolutional layers. There are two key advantages that recommend U-

Net for our purpose.  

1.Multi-resolution decomposition: The decoder uses a compression-expansion structure based on 

down-convolution and up-convolution. This means that given a fixed-size convolution kernel (3×3 

in our example), the effective receptive field of the network increases as the input goes deeper into 

the network. 

2.Local-global composition: In each resolution level, the outputs of the convolutional block in the 

contraction are directly connected and concatenated with the input of the convolutional block in the 

expansion. The skip connection, which combine deep, semantic, coarse-grained feature maps from 

the decoder sub-network with shallow, low-level, fine-grained feature maps from the encoder sub-

network. 

 

 

 

 

 

 

 

 

 

 

Fig.2. Visual illustration of the proposed learning architecture (middle part) based on U-Net, 

indicating the type of layers, nodes in each layer, the numbers of feature map, etc. 

4. Experiments 

In this section, we show the results of our simulations and experiments. The FPNET is already 

pretrained with the simulation training dataset and tested with the test dataset.  The hyperparameters 

of FPNET are carefully adjusted to reach the best performance in the training process. Specifically, 

we set the learning rate as 1 × 10-4, the batch size as 32 and the patch size as 128. We train FPNET 

with 300,000 iterations. We use MAE (Mean Absolute Error) loss function to constraint the training. 
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We perform FPNET and AP on the simulation test dataset under a series of overlapping radios. We 

also show the performance of AP and FPNET with a series of noise levels. To be clear, all results of 

FPNET in subsection 4.1 and 4.2 are trained respectively because their training datasets are 

completely different from each other. All methods are implemented with Python and run on a 

NVIDIA GTX 1080Ti graphics card. 

4.1 Performance with random images sequence and different overlap 

Unlike those iteration-based strategy [10,19], we use DNN to build model and train model to study 

the non-linear relations between input and output on a large-scale dataset. After training the model, 

the DNN can be used for prediction and quickly perform the reconstruction process. 

 

 

Fig.3. Evaluation of reconstruction results under a series of overlapping radios. AP-R and FPNET-R 

represents AP algorithm’s and FPNET’s test results of random image sequence respectively. (a) 

show the PSNR (Peak signal to noise ratio) of recovered images, (b) show the SSIM (structural 

similarity index) of recovered images. 
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Fig.4.1. Example recovery results of AP and FPNET under 0% and 65% overlap radios on test 

Dataset 

 

 

 

 

Fig. 4.2. Ground truths’ example of test dataset (correspond to Fig.4.1). 

As discussed in Section 1, random updating sequence of intensity images and low overlap radio limit 

the reconstruction and temporal resolution of FPM. Reducing overlap radio of intensity images, the 

final resolution of reconstruction results will decrease, which is equivalent to add blurring to the final 

results. If high-resolution intensity can be reached with fewer overlap radio, the temporal resolution 

of FPM will greatly increase. If the updating sequence of intensity images are random, the recovery 

process is hard to converge to good results. To test the performance of FPNET with low overlap radio 

and random sort intensity images, we compare the reconstruction results of FPNET methods with 

intensity images with different overlap radio, random sort and the result of AP with the same images. 

The PSNR and SSIM of the reconstruction results are shown in Fig. 3 and Fig.4.1, Fig.4.2. The 

experiment demonstrates that FPNET can still reach a usable reconstruction result when greatly 

reducing the overlap radio of intensity images and disrupting intensity images’ order. This 

characteristic of FPNET is very useful in conditions that requiring high temporal resolution. This 

experiment also proves that FPNET model is very helpful to overcome positional misalignment 

problem. 
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4.2 Performance under noise 

 

 

 

 

 

Fig.5.1. Example recovery results of AP and FPNET on the test dataset.  

Gaussian distribution noises with zero mean and standard deviation of 1×10-4, 2×10-4, 3×10-4 are 

added on group 1,2 and 3. 

 

 

 

 

 

 

 

 

 

 

Fig.5.2. Evaluation of recovery results under a series of noise levels. The graph above show the 

PSNR and SSIM of recovery images under noise. 

 

 

 

 

 

Fig.5.3. Ground truths’ example of test dataset (correspond to Fig.5.1) 

AP-1 FPNET-1 AP-2 FPNET-2 AP-3 FPNET-3 

 
23.86/0.621 

 

27.93/0.739 

 

21.67/0.557 

 

26.84/0.712 

 
20.11/0.516 

 

26.08/0.709 

 
23.71/0.636 

 

27.51/0.721 

 

21.48/0.569 

 

27.05/0.695 

 

20.63/0.521 

 

26.44/0.689 

 
20.32/0.692 

 

24.56/0.743 

 

18.66/0.558 

 

24.32/0.731 

 

17.03/0.532 

 

24.04/0.706 

 

23.89/0.701 

 

27.61/0.787 

 

21.76/0.654 

 

27.33/0.794 

 

20.68/0.611 

 

26.67/0.781 

    

0 1 2 3
20

25

30

P
S

N
R

/d
b

                        σ                             10-4 

 FPNET

 AP

0 1 2 3

0.5

0.6

0.7

0.8

S
S

IM

                                σ                               10-4

 FPNET

 AP



International Journal of Science Vol.7 No.4 2020                                                             ISSN: 1813-4890 

 

235 

 

To evaluate the effectiveness of FPNET, we perform FPM reconstruction with FPNET and AP on the 

simulation test dataset and compare the results of these two methods. Under actual experimental 

conditions, the captured intensity images are contaminated by imaging noise which greatly affects 

the reconstruction results. To simulate the actual conditions, gaussian distribution noises with zero 

mean and standard deviation ranging from 2 × 10-5 to 3 × 10-4 are added on the test dataset respectively. 

The FPNET method is already trained on the training dataset before test. Fig.5.1 and Fig.5.3 show 

some example reconstruction results of these two methods and the ground truth. The PSNR and SSIM 

of these example images are also shown in the figure. Besides, Fig.5.2 show the PSNR and SSIM of 

AP and FPNET under different noise levels. As the plots and example results show, FPNET’s results 

are more smoothly and have more details and fewer artifacts comparing with AP’s. The increase in 

noise has little effect on the FPNET’s result and the impact on the AP’s results are more and more 

obvious. It can be concluded that FPNET performs better and more robust than AP under noise. 

5.  Conclusion 

We introduced a reconstruction method for Fourier ptychography based on U-net structure. We 

demonstrated that it is superior to use the deep neural network to perform FPM recovery. Once our 

model is well trained, it can perform high-quality reconstruction rapidly by using the graphics 

processing unit. We also showed that for low-overlapped and non-overlapped Fourier sampling, 

FPNET performed significantly better than AP. Furthermore, FPNET is more robust than AP under 

system aberrations. 
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