
International Journal of Science Vol.7 No.4 2020 ISSN: 1813-4890

242

Improve Performance of Flash-based SSDs through Multi-Subpage
Merge and Page-Level Temperature Recognition

Xiangwei Zeng

School of Information Science and Technology, JiNan University, Guangzhou 510632, China.

xzengwei1313@qq.com

Abstract

Flash memory-based solid-state disks(SSDs) have better performance than magnetic disks and

are gradually replacing hard disks in desktop systems. However, although DRAM is embedded

in SSD as a cache, SSD may also happen unstable write performance with continuous writing,

because non-overwrite write and garbage collection(GC) operations are frequently triggered

when physical pages are written. In this paper, we propose a new cache management strategy

called MSAC, which manages the cache through multi-subpage merging algorithm and page-

level temperature identification algorithm. We implement MSAC in SSDsim and test it with

real workloads. Our experimental results show that MSAC can effectively improve SSD

performance and prolong SSD lifetime by reducing the write average response time by up to

48.8% and the number of GC by up to 33.4%.

Keywords

Flash; Non-overwrite; Garbage collection; Page reconstruction; Data temperature

identification.

1. Introduction

Flash memory has been gradually applied to large-scale storage systems because of its fast read-write

speed, low energy consumption and light weight. Compared with hard disk drives(HDD), SSD has

high random-access performance because it has no mechanical seeking time
[1,2,3]

.

In addition to ordinary read and write operations, erasure operations are also one of the frequent

operations in SSD. A SSD consists of several flash chips, each flash chip contains a large number of

flash blocks, and each flash block is composed of a large number of flash pages[4,5,6]. Flash page is

the smallest unit to read and write flash memory, and flash block is the smallest unit to erase flash

memory. Flash memory has the physical characteristics that must be erased before writing, so the

update operation of solid-state disk usually writes to other idle physical pages first, marks the former

physical pages as invalid pages, and finally modifies the mapping relationship. This update operation

is called remote update operation. Flash memory system uses remote update operation to replace the

local update operation of disk. Because of this update feature, SSD will generate invalid data pages

in the process of using. In order to recover these invalid pages, the software system inside SSD will

issue a garbage collection (GC) command[7,8]. First, the valid pages in the recovered flash block

(recovery block) will be moved to other free blocks, and then the recovery block will be erased, which

completes the recovery of the recovery block. However, garbage collection will take up the bus of

the flash chip. If a request is sent at this time, it will lead to a delay in waiting, which will reduce the

overall performance of SSD. Therefore, it is also important to reduce the amount of garbage collected

during SSD use.

2. MSAC

2.1 System Overview

A flash system of flash-based SSD hardware and software on the system including flash chip and FTL

consisting of caching strategies, page mapping, wear leveling, and garbage collection. Our proposed

International Journal of Science Vol.7 No.4 2020 ISSN: 1813-4890

243

MSAC has three important components, including Multi-Subpage Merge(MSM), Page Level

Temperature Identification(PLTI), and Merge-Page Mapping(MMAP).

We apply MSAC to the SSD internal onboard cache instead of the traditional LRU algorithm for

write cache. The read and write requests sent from Applications will be parsed via File system and

Block device driver and sent to the SSD through the host interface. SSD processing of read and write

requests generally includes: cache management and read and write operations to the flash memory.

In MSAC, the data in the cache queue will be written back to flash memory according to the MSM

and PLTI algorithms. When a write back operation is triggered in buffer, MSM merges the data of

multiple pages in the write cache that are less than one page size to meet the requirement of one page

size for the write back operation, which will avoid non-overwrite writes. After each trigger of the

MSM algorithm, a merge page map is generated for the relevant logical page. The mapping table

composed of the merge page map is called MMAP.The original logical page and physical page are

one-to-one mapping, which will become one-to-one and many-to-one mapping coexist after the MSM

is triggered. Therefore, multiple mappings will be required when read request arrived, this can cause

MSM write performance to be superior but performance to be mediocre. Therefore, we propose PLTI,

using the locality of I/O workload, divide the buffer area logic into temperature search area and non-

search area, and set the temperature value for each logical page in the cache. To select the appropriate

logical page for the write back operation by judging the temperature value priority. Improve overall

performance by mitigating read performance issues with MSM by increasing cache hit ratios.

2.2 Multi-Subpage Merge

There are many cache management algorithms in FTL. MSAC is improved on the basis of LRU,

because it needs to take advantage of the locality of I/O workload. Fig.1 shows the operating principle

of the MSM model in MSAC. In the buffer node, the nodes satisfying the condition are sequentially

searched from the tail (such as D10), and such nodes (such as D2) are found to merge the node with

the tail node, and the two nodes will be delete from the buffer. The MSM model detects whether the

valid data size of D10 is full of a page size before the D10 be write to flash. If so, the MSM operation

is skipped, otherwise, enter the MSM processing function and check whether the valid data of the

page full one page size starts at the end of the LRU queue. If not, it is check whether the page can be

merged into one page size with the tail of queue page. If so, algorithm 1 will merge the page with the

tail of queue page into a new page and write back to flash memory. At the same time, it will modify

the mapping table of related page and delete the page and the tail of queue page from the buffer. If

the page does not meet the MSM condition or there are no eligible pages in the LRU queue, then enter

the MSTI's PLTI model for processing. The MSM model eliminates the non-overwrite writes that

may occur during page write back as much as possible in the buffer and reduces the number of write

operations, thus it is greatly improving the write performance of the SSD.

Fig. 1 An example of subpage merge operation

2.3 Page Level Temperature Identification

PLTI splitting the buffer logic into temperature search area and non-search area. When the tail page

in the queue does not satisfy the MSM condition, the FTL will execute the PLTI function. If the page

is cold data, write back directly to the flash memory and modify the mapping table. If the page is

warm data, search for cold data from the tail of queue in the temperature search area and exchange

with the page of the queue to write back to the flash memory. If no cold page in the temperature

search area, the tail of the team is directly written back to the flash memory and update the mapping

table. If the tail page of the queue is hot page, it will search for the cold and warm page in the

temperature search area according to the write back priority(cold page > warm page > hot page). If

International Journal of Science Vol.7 No.4 2020 ISSN: 1813-4890

244

found the cold page and replace with the tail page of queue then write back to flash. If the cold page

is not found and then the warm page will be searched, the replacement method is the same as the cold

page. When there is no cold and warm page in the temperature search area, the tail hot page of queue

will be write back.

3. Evaluation

3.1 Experiment environment

To evaluate the efficiency of the MSAC, we implemented the MSAC on SSDsim
[2]

. The SSDsim is

an open-source SSD simulator that can realistically and effectively simulate the performance of FTL

algorithms in hardware environments. Table 1 shows our hardware configuration parameters and

performance calculation parameters. Our experiments used a 3.4GHz, 8-core Intel processor with

8GB memory.

Table 1 The SSD model parameters

Parameter Value

SSD Capacity 8GB

Aged Ratio 70%

Channel Number 2

Chip Numbers 4

Dies Per Chip 2

Planes Per Die 2

Blocks Per Plane 2048

Page Per Blocks 64

Page Size 4KB

4KB-Page Read 20us

4KB-Page Write 200us

Block Erase 1.5ms

3.2 Workload

We selected four I/O workloads from the real device layer of Microsoft Cambridge Research
[9-13]

. The

web trace comes from the web search server, most of which are read request, the Fin1 and Fin2 trace

are from the financial server, mainly based on write requests; and Syn trace is from the mail server,

the number of read and write requests are not much different in proportion.

3.3 Performance results

Average response time: Fig.2 (a) and Fig.2 (b) shows the average response time for read and write

requests normalized under four real load drivers. It can be seen from (a) that compared with LRU
[13]

,

BPLRU[1], and 2QW-Clock
[5]

, the average response time of MSAC write requests is reduced by

48.8%, 30.8%, and 46.7%, respectively, on average. Obviously, it is because the sub-page merge

module merges most of the data pages that may undergo non-overwrite write operations in the cache

area, so that a large number of write operations can be directly responded with the write operation

time of one page, and at the same time, it is greatly reduced. This increases the number of write

operations and therefore greatly improves the response time of write requests. It can be seen from (b)

that compared with the LRU, BPLRU, and 2QW-Clock algorithms, the average response time of

MSAC read requests is reduced by 12.5%, 12.6%, and 9%, respectively, on average. It can be seen

from Fig.2 that BPLRU has a slight decrease in read request performance. The read and write

performance of 2QW-Clock in Fin2 load is reduced because about 97% of the requests in Fin2 trace

are small write requests, while 2QW- The Clock algorithm is mainly aimed at improving the hit rate,

and it does not perform well with lowercase requests. It can be seen that MSAC can maintain good

read and write performance regardless of the type of load it serves.

International Journal of Science Vol.7 No.4 2020 ISSN: 1813-4890

245

(a)write request

agervage response time

(b) read request

agervage response time

(c) write request hit

ratio

(d) read request hit

ratio

Fig. 2 The normalized write and read average response time, write and read request hit ratio, driven

by the real workloads

Hit ratio: In order to better understand the results of the previous average read and write response

time experiments, we experimentally check the MSAC read and write request hit ratio under real load.

Fig.2 (c) shows the comparison results of the write request hit ratios of MSAC, LRU, BPLRU, and

2QW-Clock after being standardized under four real trace drivers. The experimental results show that

MSAC can significantly improve the write cache hit rate of SSD, compared with the other three

comparative experiments, it has improved by 33.0%, 26.8% and 16.3% on average. Fig.2 (d) shows

the read request hit ratio after normalization of four comparative experiments under real trace load.

It can be found that the read request hit rate under the load of Web and Sys trace is close to 1, so it is

difficult to improve the read performance of these two traces corresponding to that shown in Fig.2 (b).

Under four loads, MSAC improves the read request hit rates by up to 21.0%, 21.0%, and 34.0%,

respectively, compared to the three comparative experiments. Of course, MSAC's ability to

significantly increase the write request hit rate is closely related to the PTLI model's ability to take

full advantage of the locality of the load.

4. Conclusion

In this paper, we propose MSAC, and before the cache triggers a write request to write back, the write

request is processed as follows: (1) When the valid data of the logical page that is about to be written

back is less than a full page size, the page and the cache are Perform logical page merge operations

on other logical pages of the same nature and modify and add new mapping relationships; (2) When

the logical page that is about to be written back does not meet the conditions in (1), the PLTI function

is triggered, which is the temperature of the logical page The value adjusts the logical page position

in order of priority, and finally writes back. Experimental results show that our proposed MSAC

algorithm can effectively improve SSD write performance. Compared with the three existing methods,

the write performance of MSAC is improved by up to 48.8%, and the number of GCs is reduced by

up to 33.4%.

References

[1] Kim, Hyojun, and Seongjun Ahn. ”BPLRU: A Buffer ManagementScheme for Improving

Random Writes in Flash Storage.” FAST.Vol. 8. 2008.C.

[2] Hu Yang, Jiang Hong, Feng Dan, et al. Performance impact and interplay of SSD parallelism

through advanced commands, allocation strategy and data granularity [C]//Proc of the

international conference on Supercomputing. ACM, 2011: 96-107

[3] Lu, Youyou, Jiwu Shu, and Weimin Zheng. ”Extending the lifetime of flash-based storage

through reducing write amplification from file systems.” Presented as part of the 11th USENIX

Conference on File and Storage Technologies (FAST 13). 2013.

[4] Wu Suzhen, Mao Bo, et al. GCaR: Garbage collection aware cache management with improved

performance for flash-based SSDs [C]//Proc of the 2016 International Conference on

Supercomputing. ACM, 2016: 28

International Journal of Science Vol.7 No.4 2020 ISSN: 1813-4890

246

[5] He Dan, Wang Fang, Feng Dan, et al. 2QW-Clock: An efficient SSD buffer management

algorithm [C] //2015 IEEE 22nd International Conf on High Performance Computing (HiPC).

IEEE, 2015: 47-53

[6] Seol, Jinho, et al. ”A buffer replacement algorithm exploiting multichip parallelism in solid state

disks.” Proceedings of the 2009 international conference on Compilers, architecture, and

synthesis for embedded systems. ACM, 2009.

[7] SLC vs. MLC: An Analysis of Flash Memory. In white paper. Super Talent Technology ,Inc.

http: //www.supertalent.com/datasheets/SLC_vs_MLC%20whitepaper.pdf

[8] Jung H, Shim H, Park S, et al. LRU-WSR: integration of LRU and writes sequence reordering

for flash memory[J]. IEEE Transactions on Consumer Electronics, 2008, 54(3): 1215-1223

[9] UMass Trace Repository. http://traces.cs.umass.edu

[10] Microsoft Enterprise Traces. http: //iotta. snia.org /traces/list/BlockIO

[11] Chan J C W, Ding Q, Lee P P C, et al. Parity Logging with Reserved Space: Towards Efficient

Updates and Recovery in Erasure-coded Clustered Storage [C] //Proc of the 12th USENIX

Conference on File and Storage Technologies (FAST 14). 2014: 163-176

[12] Yan Shiqin, Li Huaicheng, Hao Mingzhe, et al. Tiny-tail flash: Near-perfect elimination of

garbage collection tail latencies in NAND SSDs [J]. ACM Trans on Storage (TOS), 2017, 13(3):

2

[13] Megiddo N, Modha D S. Outperforming LRU with an adaptive replacement cache algorithm [J].

Computer, 2004, 37(4): 58-65

