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Abstract 

In this study, we discuss the portfolio based on Half-parameter Copula-VaR-CVaR Methods. 

In order to fit the cumulative distribution function better, we use Half-parameter Method 

rather than Parameter Method or Non-parameter Method. In this paper, we also consider five 

kinds of copula functions, including Gaussian Copula, Student T Copula, Clayton Copula, 

Frank Copula and Gumbel Copula, where the first two copulas are of Elliptical Type, while the 

last three copulas are of Archimedean Type. To discover which copula is better, we compare 

each copula mentioned above with Empirical Copula. Finally, we set up a portfolio model by 

minimizing VaR or CVaR. Some experiments are conducted in detail by using the data of 

Hushen 300 Index (IF300) and Zhongzheng 500 Index (IC500) to illustrate our developed 

models. 
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1. Introduction 

All Modern portfolio theory is originated from the research work of Markowitz’s mean–variance 

model [1]. Later, Sharpe [2] and many other researchers developed different mathematical methods 

in portfolio theory, most of which were based on probability and optimization theory. 

In 21st century, Berger Theo and Missong Martin [3], Stulajter F. [4], T. Nagler, C. Bumann and C. 

Czado [5] and many other researchers introduced copula method into portfolio theory and illustrated 

some meaningful results. 

At the same time, Lux Thibaut, and Rueschendorf Ludger [6], Madhusudan Karmakar and Samit Paul 

[7] use VaR(Value at Risk) and CVaR(Conditional Value at Risk) to build the portfolio model instead 

of varience. Manying Bai, and Lujie Sun [8] combined copula method and CvaR and applied them 

into portfolio models. Xiao-Li Gong, Xi-Hua Liu and Xiong Xiong [9] and Zong-Run Wang, Xiao-

Hong Chen, Yan-Bo Jin and Yan-Ju Zhou [10] even introduced GARCH model into Copula-VaR-

CVaR based portfolio models, and hence, many magnifique results have been made. 

In summary, the primary focuses of this study are to research the portfolio theory based on Half-

parameter Copula-VaR-CVaR Methods. The remainder of this paper is organized as follows. Section 

2 introduces basic definitions and preliminary results related to the following models. Section 3 is the 

model construction. In Section 4, this study will give a numerical example, and the comparison 

analysis among different situation. Finally, Section 5 summarizes the conclusions and delivers future 

study scopes. 

The major contributions and highlights of this study are: (a) Use the Half-parameter method to fit the 

cumulative distribution function; (b) Introduce different kinds of copula and compare each kind of 

copula with empirical copula; (c) Apply the VaR and CVaR models in portfolio theory, and even 

demand a constraint on the return, and compare their results.  

2. Preliminaries 

2.1 The definition 

Two variables copula function is a function C(u,v): [0,1]×[0,1]→[0,1], and satisfies all the properties 

of a bi-various cumulative distribution function and has uniform marginal. 
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2.2 Basic theorem 
2.2.1 Sklar’s theorem  

Let H(x,y) be a joint distribution function of two variables with marginal distribution functions F(x) 

and G(y). Then, there exists a copula function C(u,v), such that H(x,y)=C(F(x),G(y)).  

2.3 Some kinds of copulas 

The above definition and theorem can also be extended to higher dimensional case. 

Let ρ be a correlation matrix and 𝑢1, 𝑢2, 𝑢3 in [0,1], the 3 dimensional Gaussian copula density is 

given by: 

 

where ρ and ρ−1 are a three-dimension matrix and its inverse respectively, |ρ| is the determinant of 

the correlation matrix, ξ is the vector of the inverse standard univariate Gaussian cumulative 

distribution function, which is applied to each element 𝑢1, 𝑢2, 𝑢3, and finally ξ𝑡 is the transposed 

vector of ξ. A three-dimension identity matrix I (i.e. with unit diagonal terms and zero elsewhere) is 

also employed. 

Let ρ be a correlation matrix, ν a degree of freedom and 𝑢1, 𝑢2, 𝑢3 in [0,1], the 3 dimensional Student 

T copula density is given by: 

 

where ρ and ρ−1 are a three-dimension matrix and its inverse respectively, |ρ| is the determinant of 

the correlation matrix, Γ is the Gamma function, ξ is the vector (ξ1, ξ2, ξ3) of the inverse univariate 

Student cumulative distribution function, which applies to each element 𝑢1, 𝑢2, 𝑢3, and finally ξ𝑡is 

the transposed vector of ξ. 

Let θ >0 be a positive correlation parameter and 𝑢1, 𝑢2, 𝑢3 in [0,1], Clayton copula is given by: 

 

Let θ >0 be a positive correlation parameter and 𝑢1, 𝑢2, 𝑢3 in [0,1], Frank copula is given by: 

 

Let θ >1 be a positive correlation parameter and 𝑢1, 𝑢2, 𝑢3 in [0,1], Gumbel copula is given by: 
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3. Model construction 

3.1 The construction of marginal distribution function 

In the field of finance and insurance, the tail is often worth of attention. However, using only 

parameter estimates may bring the risk of model misplacement. Purely using non-parametric 

estimates, considering the extreme values of the tail may result in over-fitting. A compromise method 

is to segment the empirical data into three part, each part is estimated separately, and then combine 

them together. More precisely, the upper tail part and the lower tail part are estimated by parameter 

method, while the middle part is estimated by nom-parametric method. Then one can put these three 

parts together to construct the marginal distribution function. This is called half-parameter method. 

In this paper, we set an upper tail threshold u, and a lower tail threshold l. Thus, the marginal 

distribution function has the form: 

 

For the upper tail distribution, we use generalized pareto distribution, which is a thick-tailed 

distribution and is suitable to describe financial time series. It has the form: 

𝐹3(𝑥) = 1 − (1 + 𝑘
𝑥 − 𝑢

𝜎
)−

1
𝑘 

where k, σ are estimated by maximum likelihood estimate. For the lower tail, after a symmetric 

transform, we can also use generalized pareto distribution. 

To ensure the nondecreasing of distribution function, we use linear substitution when necessary. 

For the middle part, we will apply the kernel density estimate. We will use Gaussian kernel function 

since it has good property. The Gaussian kernel function is defined as: 

 

Then, the density of the middle part has the form: 

𝑓ℎ(x)=∑
1

𝑛ℎ
𝐾(

𝑥𝑖−𝑥

ℎ
)𝑛

𝑖=1  

where n is the length of financial time series, 𝑥𝑖  denotes the element of financial time series 

(𝑥1, 𝑥2,…, 𝑥𝑛), and h denotes the bandwidth. 

   To obtain the optimized h, we just need to minimize mean integrated squared error (MISE), which 

is defined as followed: 

 

where f(x) denotes the real density function. 

Finally, the estimate distribution function of the middle part is 

F2(x)=∫ 𝑓ℎ
𝑥

𝑢
(𝑡)𝑑𝑡. 

3.2 The construction of joint distribution function by introducing copula function 

Up till now, we have obtained the marginal distribution function of each asset. Next, we introduce 

five kinds of copula function to obtain the joint distribution function. They are Gaussian Copula, 

Student T Copula, Clayton Copula, Frank Copula and Gumbel Copula. To discover which copula 

function fits the reality best, we define Empirical Copula as follows: 

C(u,v)=
1

𝑛
∑ 𝐼{𝐹(𝑥𝑖)≤𝑢} ∗ 𝐼{𝐺(𝑦𝑖)≤𝑣}
𝑛
𝑖=1  

where 𝐹(𝑥𝑖)  and 𝐺(𝑦𝑖)  denote the marginal distribution function of each asset, and I{A} is the 

characteristic function of set A. 

F(x)= 
𝐹1(𝑥)           𝑥 < 𝑙
𝐹2(𝑥)    𝑙 ≤ 𝑥 ≤ 𝑢
𝐹3(𝑥)           𝑥 > 𝑢

 

K(x)=
1

 2𝜋
exp⁡(−

1

2
𝑥2) 
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By calculating the difference between each of the five copulas with empirical copula, and comparing 

the results, we can find the one which has the smallest difference, and hence the best one. 

3.3 The construction of portfolio model based on Half-parameter Copula-VaR-CVaR 
Methods 

Assume that the historical return of a financial asset is equal to the expected rate of return. Set the 

weights for investing in these two indices as 𝑤1 and 𝑤2. Then, define the Loss of Portfolio as below: 

L=max{0, -(𝑤1*r1+𝑤2*r2)} 

where r1, r2 denote the logarithmic return of two asset. 

    For a given confidence level 𝛼, define Value at Risk: 

VaR=𝐹𝐿
−1(𝛼) 

where 𝐹𝐿
−1 is the inverse function of distribution function of loss. 

    Define Conditional Value at Risk: 

CVaR=E(L|L>=Var) 

where E(X) denote the mathematical expectation of random variable X. 

    Finally, we construct the portfolio model based on Half-parameter Copula-VaR-CVaR Methods: 

min𝑉𝑎𝑅 𝑜𝑟 𝐶𝑉𝑎𝑅 

𝑠. 𝑡.  {

𝑤1 + 𝑤2 = 1
𝑤1, 𝑤2 > 0

𝐹(r1, r2) = 𝐶(𝐹1(r1), 𝐹2(r2))
 

where r1 ,  r2  denote the logarithmic return of two asset, 𝐹1(r1), 𝐹2(r2)  denote the marginal 

distribution function of each asset, C(u,v) denote the copula function, and F(r1, r2) denote the joint 

distribution function. 

Moreover, we can construct another portfolio model which may be better by introducing a constraint 

on the expected return: 

min𝑉𝑎𝑅 𝑜𝑟 𝐶𝑉𝑎𝑅 

𝑠. 𝑡. {

𝑤1 +𝑤2 = 1
𝑤1, 𝑤2 > 0

𝐸 max{0, (𝑤1 ∗ r1 +𝑤2 ∗ r2)} ≥ v

𝐹(r1, r2) = 𝐶(𝐹1(r1), 𝐹2(r2))

 

Here, the additional constraint means that while we want to minimize the risk, we also want to 

maximize the return. So we add a constraint such that the return can not be too small, it has to be 

larger than some value. This new model provides a balance between the risk and the return. 

4. Numerical examples  

4.1 Data processing 

In this section, we make some empirical analysis of the models developed in the last section. The data 

used in this section comes from the webpage https://money.163.com/. We download the daily prices 

of Hushen 300 Index and Zhongzheng 500 Index from 2015.01.06 to 2019.05.17. The reason why 

we choose these two asset is that roughly speaking, they represent the stocks of grand companies and 

small companies, respectively, which are of great representativeness. Then, we define the daily 

logarithmic return: 

𝑟𝑡 = ln(𝑃𝑡) − ln (𝑃𝑡−1) 

where 𝑃𝑡 is the price on day t. 

4.2 Figures and comparison 

By the software R, we first give the histogram of daily logarithmic return of Hushen 300 Index and 

Zhongzheng 500 Index respectively, see Fig.1 and Fig.2. 

https://money.163.com/


International Journal of Science Vol.8 No.2 2021                                                             ISSN: 1813-4890 

 

47 

 

 

Fig. 1 Histogram of IF 

 

 

Fig. 2 Histogram of IC 

 

From the figures above, we can see that the data are between -0.1 and 0.1, and most of the data are 

between -0.02 and 0.02. So we can view the data as tail extreme values as they are outside the interval 

[-0.02, 0.02]. Thus, applying the Half-parameter Estimation, with upper tail threshold u=0.02, and 

lower tail threshold l=-0.02, we get the marginal distribution function of daily logarithmic return of 

Hushen 300 Index and Zhongzheng 500 Index respectively, see Fig.3 and Fig.4. 
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Fig. 3 Cumulated distribution function of IF 

 

Fig. 4 Cumulated distribution function of IC 

 

And also the density function of daily logarithmic return of Hushen 300 Index and Zhongzheng 500 

Index respectively, see Fig.5 and Fig.6. 

 

Fig. 5 Density of IF 
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Fig. 6 Density of IC 

 

Next, we apply the empirical copula function to obtain the joint distribution function (Let U,V be the 

marginal distribution function of the daily logarithmic return of Hushen 300 Index and Zhongzheng 

500 Index respectively), see Fig.7. This is obtained by the software Matlab. 

 

 

Fig. 7 Empirical Copula 

 

By comparing the mean square difference between five kinds of copula (Gaussian Copula, Student T 

Copula, Clayton Copula, Frank Copula and Gumbel Copula) with empirical copula, we find that the 

mean square difference between Gumbel copula and empirical copula is the smallest among them, 

and thus, Gumbel copula is the best one to combine Hushen 300 Index and Zhongzheng 500 Index 

together. (Here are the mean square difference of five kinds of copula respectively: dGau2 = 0.1456, 

dt2 = 0.1412, dClay2 = 0.7160, dFr2 = 0.2595, dGum2 = 0.0914) 
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Now, we present the figure of Gumbel copula, see Fig.8. 

 

 

Fig. 8 Gumbel Copula 

 

At last, we obtain the value of VaR and CVaR under the confidence level of 0.99, 0.95, 0.90.  

In order to calculate VaR and CVaR, we use Monte Carlo Method to simulate the portfolio, by method 

of rejection, and then calculate the VaR and CVaR based on the simulated sequence. More precisely, 

given the density function f(x,y) of a random vector (X,Y), knowing that X⊆[a,b], Y⊆ [c,d] and 

f⊆ [0,K], we want to simulate the random vector (X,Y). Firstly, we simulate three uniformly 

distributed random variables U, V and W on the interval [a,b], [c,d] and [0,K] respectively. If W is 

smaller than f(U,V), then we have finished, and the simulated (X,Y) is (U,V). Otherwise, we have to 

repeat, and to simulate the uniformly distributed random variables U, V and W again, until W is 

smaller than f(U,V). This is called the method of rejection, and it’s very useful in our case. 

If we set 𝑤1 = 0.99,𝑤2=0.01, we get the following Table 1. 

 

Table 1. VaR and CVaR under different confidence levels 
confidence level VaR CVaR 

0.99 0.0509 0.0610 

0.95 0.0278 0.0409 

0.90 0.0194 0.0322 

 

From the table above, we sum up some facts. There is a 99% of confidence to say that the maximum 

loss of portfolio is no more than 0.0509, and there is a 90% of confidence to say that the maximum 

loss of portfolio is no more than 0.0194. As the confidence level goes down, both VaR and CVaR go 

down, which indicates that if we wish to speak more precisely, the number of maximum loss of 

portfolio has to be larger. On the other side, comparing Var and CVaR, we find that at each confidence 

level, CVar is no less than VaR, which indicates that CVaR describes the risk of portfolio more 

completely than VaR does, and hence it is a better index to describe the risk of portfolio. 

Now we find the optimal value of VaR and CVaR as the weight of the portfolio varies. Here are the 

results, see Table 2. 
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Table 2. Optimal portfolio by minimizing VaR or CVaR 

confidence 

level 

optimal (𝑤1, 𝑤2) by min VaR and 

optimal VaR 

optimal (𝑤1 , 𝑤2) by min CVaR and optimal 

CVaR 

0.99 (0.89, 0.11) 0.0507 (0.99, 0.01) 0.0610 

0.95 (0.98, 0.02) 0.0278 (0.99, 0.01) 0.0409 

0.90 (0.96, 0.04) 0.0193 (0.99, 0.01) 0.0322 

 

From the table above, we know that if we hope to minimize the maximum loss of portfolio at the 

confidence level 0.99, we should divide a 89% of our money to buy Hushen 300 Index, while the rest 

to buy Zhongzheng 500 Index. In general, we can see that the risk of Zhongzheng 500 Index is larger 

than Hushen 300 Index, this is why we allocate more amount to Hushen 300 Index. 

However, if we not only wish to minimize the risk but also hope to maximize the return, then we can 

add an additional constraint as in the model discussed at the end of section 3 with v=0.012. Therefore, 

we obtain the following results, see Table 3. 

 

Table 3. Optimal portfolio by minimizing VaR or CVaR with an extra constraint 

confidence 
level 

optimal (𝑤1, 𝑤2) by min VaR with an 

extra constraint and optimal VaR 

optimal (𝑤1 , 𝑤2) by min CVaR with an extra 

constraint and optimal CVaR 

0.99 (0.79, 0.21) 0.0511 (0.79, 0.21) 0.0624 

0.95 (0.77, 0.23) 0.0278 (0.79, 0.21) 0.0416 

0.90 (0.79, 0.21) 0.0194 (0.79, 0.21) 0.0328 

 

From this table, we can conclude that after adding the extra constraint, both the VaR and CVaR 

increase. This is because if we want to gain more return, we will have to suffer more risk. And the 

optimal weight is (0.79, 0.21) at confidence level 0.99. Comparing with the former table, where the 

optimal weight is (0.89, 0.11), this implies that Zhongzheng 500 Index may have more return than 

Hushen 300 Index, while at the same time, it may have more risk. 

5. Conclusion and future study scopes 

In this paper, we discuss the portfolio based on Half-parameter Copula-VaR-CVaR Methods. We use 

Half-parameter Method rather than Parameter Method or Non-parameter Method to fit the cumulative 

distribution function better. We also consider five kinds of copula functions including Gaussian 

Copula, Student T Copula, Clayton Copula, Frank Copula and Gumbel Copula. By comparing each 

copula mentioned above with Empirical Copula, we find that Gumbel copula is the best among the 

five above to describe the joint distribution function. Finally, we set up a portfolio model by 

minimizing VaR or CVaR and find that CVaR can describe the risk of portfolio more completely than 

VaR. 

Looking forward to the follow-up research work, some further research is worthy. (a): There is only 

one joint distribution function in this paper, yet one can develop a joint distribution function for each 

year, and this will fit the real data better. (b): In this paper, we use VaR and CVaR to develop portfolio, 

yet one can introduce other index such as all kinds of entropy. Some interesting results may come 

out! 
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