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Abstract 

According to the experimental dataset on the structure insensitive properties of 21 different 

ferrites of the doping NiZn system, support vector regression (SVR) combined with particle 

swarm optimization (PSO) for its parameter optimization was employed to construct 

mathematical model for prediction of the structure insensitive properties of the NiZn ferrites. 

The accuracy and reliability of the constructed support vector regression model are validated 

by leave-one-out cross validation (LOOCV). Test results show that for Curie temperature (Tc), 

saturation magnetization (Ms) and dielectric constant (𝜺) the maximum absolute percentage 

error does not exceed 10%, the mean absolute percentage error are 0.73%, 0.28%, 2.44%, and 

the correlation coefficient (𝑹𝟐) is as high as 0.999, 1 and 0.994 respectively. This investigation 

suggests that one can optimize designing or controlling the experimental process by using 

support vector regression model to get suitable properties of NiZn ferrites. 
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1. Introduction 

The ferrite material NiZn which have high electrical resistivity, low loss, and good high-frequency 

characteristics has become a research focus in recent years.[1-3] But the sintering temperature of the 

NiZn ferrite is about 1300 0C by using traditional ceramic technology, there is a certain gap compare 

with the sintered target of below 1000 0C. So more research is focused the low temperature sintering 

technology of ferrites at present. Another research focus is to improve the electromagnetic properties 

of ferrite by various methods in order to adapt to the application and miniaturization of anti EMI. [4-

6] But the electromagnetic properties of ferrite are affected by many factors such as formula, 

processing parameters and microstructure and so on. These factors are mutually affecting and 

restricted, the relationship between factors and the electromagnetic properties is very complex and 

nonlinear. The Curie temperature (Tc), saturation magnetization (Ms) and dielectric loss (𝜀) are 

important intrinsic parameters of ferrite, mainly depends on the chemical composition. Usually the 

structure insensitive properties can be improved through optimization of chemical composition.[7,8] 

Based on the conventional method it is very difficult to build an accurate and complete mathematical 

model to predict the structure insensitive properties. Support vector regression (SVR) combined with 

particle swarm optimization algorithm for its parameter optimization and integrating leave-one-out 

cross-validation (LOOCV) is an effective method to solve this problem. In this paper, the SVR-

LOOCV model was built to predict the structure insensitive properties of the NiZn ferrites and the 

predicted values are in good agreement with the experimental results.  

2. Methods and materials 

2.1 The brief theory of support vector regression 

Support vector machine (SVM), proposed by Vapnik and co-workers[9] in 1995 is a statistical 

machine learning theory based on structural risk minimization principle. Due to its excellent 

performance such as fast-learning, global optimization and excellent generalization ability for small-
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sample, SVM has been successfully applied to solve classification and regression problems in many 

areas. [10-20] It is called SVR when SVM was employed to solve the regression problems. The basic 

idea of SVR is to map the input vector x into a high dimensional feature space F using a nonlinear 

projecting function 𝛷(𝑥), and then to conduct a liner regression in F space. The final regression 

function of SVR is as follows: 

𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝒙, 𝒙𝑖) + 𝑏𝑙

𝑖=1 ,                                               (1) 

Where 𝑙  is the number of support vector, 𝛼𝑖  and 𝛼𝑖
∗  are Lagrange multipliers, 𝑘(𝑥, 𝑥𝑖) = 𝛷(𝑥) ⋅

𝛷(𝑥𝑖) is a kernel function, 𝑏 is a bias. In this paper, radial basis kernel was adopted as the kernel 

function, and it is formulated as Eq. (2). The detailed principle of SVR can be referred to Refs. [9, 

11]. 

𝑘(𝒙, 𝒙𝑖) = 𝑒𝑥𝑝( − 𝛾||𝒙 − 𝒙𝑖||
2)                                                  (2) 

2.2 Choosing of SVR parameters with PSO 

The PSO method proposed by Kennedy and Eberhart in 1995 was motivated by social behavior of 

organisms, such as fish schooling and bird flocking. [21,22] which can be used to search the best 

parameter subset (𝜀, 𝐶, 𝛾) that entirely decide SVR generalization. In this study, root mean square 

error (REMS), which directly influences the regression performance of SVR, is chosen as the fitness 

function: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦̂𝑖

 

− 𝑦𝑖 )2𝑛
𝑖=1 ,                                                   (3) 

Where n  is the number of training samples, 𝑦̂𝑖 represents estimated value for the ith training sample 

and 𝑦𝑖 stands for the ith actual measured values. 

2.3 Dataset and Modeling 

The dataset used in this study was selected from Ref. [23]. This dataset includes 21 samples under 

different alloying element content which were listed in table 1. NiO, ZnO, MnO, GeO2, SiO2 

represents mole percent content respectively. Tc is the Curie temperature, Ms is the saturation 

magnetization and 𝜀 is the dielectric constant. In this modeling process, mole percent content of NiO, 

ZnO, MnO, GeO2, SiO2 act as five input variables. The Tc, Ms and 𝜀 of NiZn are as the output 

variables. The modeling and prediction were conducted by using the 21 samples based on Support 

Vector Regression. After 10000 times iteration, the final SVR model successfully gets a higher 

accuracy for fitting each sample poit. 

Table 1. Dataset 
No. NiO ZnO MnO GeO2 SiO2 Tc Ms 𝜀 

1 26.67 17.78 8.88 4.00 9.33 200 2200 1 
2 26.67 17.78 11.11 8.88 2.22 190 2100 2 
3 26.90 17.94 4.93 2.24 13.45 200 2500 5 
4 26.90 17.94 4.48 0 16.14 210 2500 4 
5 26.90 17.94 4.48 16.14 0 230 2700 1 
6 26.90 17.94 4.93 13.45 2.24 240 2700 1 
7 27.45 18.30 5.03 5.95 5.95 250 3100 5 
8 27.90 18.60 4.65 4.65 4.65 280 3500 9 

9 24.40 19.50 4.88 4.88 4.88 350 2300 2 
10 26.44 21.63 2.88 2.40 2.40 100 2500 4 
11 33.65 14.42 2.88 2.40 2.40 250 3100 9 
12 28.84 19.23 2.88 2.40 2.40 370 4400 9 
13 29.12 19.42 2.43 0 3.40 340 4700 60 
14 29.12 19.42 2.43 3.40 0 350 4700 50 
15 29.41 19.60 0.98 1.47 1.47 370 4800 40 
16 29.56 19.70 2.46 0 0.50 360 4000 30 

17 29.56 19.70 2.46 0.50 0 370 4000 20 
18 29.97 19.98 0.05 0.05 0.05 440 5200 80 
19 29.98 19.98 0.025 0.05 0.05 440 5200 100 
20 29.98 19.99 0.05 0.025 0.025 440 5200 200 
21 30 20 0 0 0 450 5250 100 
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2.4 Evaluation of Model’s Generalization Performance 

Three parameters, i.e, the mean absolute error (MAE), mean absolute percentage error (MAPE) and 

correlation coefficient (R2), were adopted for generalization performance evaluation: 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑦̂𝑗 − 𝑦𝑗|𝑚

𝑗=1                                                        (4) 

𝑀𝐴𝑃𝐸 =
1

𝑚
∑ |

𝑦̂𝑗−𝑦𝑗

𝑦𝑗
|𝑚

𝑗=1                                                        (5) 

𝑅2 =
[∑ (𝑦𝑗−𝑦̄)(𝑦̂𝑗−𝑦̄̂)𝑚

𝑗=1 ]
2

∑ (𝑦𝑗−𝑦̄)2 ∑ (𝑦̂𝑗−𝑦̄̂)2𝑚
𝑗=1

𝑚
𝑗=1

                                                (6) 

Where m means the number of test samples, 𝑦𝑗 is the jth target value, 𝑦̂𝑗 stands for predicted value 

for the jth test sample and 𝑦̄ is the mean target value for all test samples. 

3. Results and discussions 

Table 2 gives a comparison between the experimental values and estimated values predicted by SVR. 

From Table 2, it can be viewed that the prediction results of majority samples for Tc (13/21=61.9%) 

estimated by SVR are equal to zero. The maximum absolute percentage error predicted by SVR is 

only 8.88% (No. 10). The other’s samples absolute percentage errors do not exceed 1.5%. For Ms, all 

of the absolute percentage error are small for each sample except No. 14. The others lie within the 

range of 0%~1% mostly. For   the absolute percentage errors of nineteen samples are near to 

experimental values among all 21 samples. Table 3 shows that for the predicted values of 21 samples 

the MAE of Tc, Ms and 𝜀 comes up to 1.70, 12.83 and 4.80, the MAPE is 0.73%, 0.28% and 2.44%, 

and the 𝑅2is as high as 0.999, 1.000, 0.994 respectively. All these results indicate that the prediction 

of SVR is excellent and SVR is an effective and powerful technique for forecasting the structure 

insensitive properties of the NiZn ferrites. 

 

Table 2. Comparison between experimental values and simulated results 
 

No. 

𝑇𝑐( 𝐶 
0 ) 𝑀𝑠(× 10−4𝑇)  𝜀(× 10−4) 

Exp. SVR Error (%)  Exp. SVR Error (%)  Exp. SVR Error (%) 

1 200 200.00 0.00  2200 2199.99 0.00  1 1.00 0.39 
2 190 190.00 0.00  2100 2094.12 0.28  2 2.00 0.00 

3 200 200.00 0.00  2500 2500.02 0.00  5 5.00 0.05 
4 210 210.00 0.00  2500 2498.65 0.05  4 4.00 0.01 
5 230 230.00 0.00  2700 2700.23 0.01  1 1.00 0.06 
6 240 240.00 0.00  2700 2700.53 0.02  1 1.00 0.00 
7 250 250.00 0.00  3100 3099.58 0.01  5 5.00 0.00 
8 280 280.05 0.02  3500 3499.95 0.00  9 9.00 0.00 
9 350 353.26 0.93  2300 2299.99 0.00  2 2.00 0.00 
10 100 91.12 8.88  2500 2500.00 0.00  4 4.00 0.01 

11 250 250.00 0.00  3100 3100.00 0.00  9 9.00 0.01 
12 370 370.00 0.00  4400 4400.00 0.00  9 9.03 0.28 
13 340 340.00 0.00  4700 4656.83 0.92  60 59.97 0.05 
14 350 350.01 0.00  4700 4555.02 3.08  50 49.99 0.02 
15 370 370.00 0.00  4800 4804.68 0.10  40 40.00 0.00 
16 360 360.00 0.00  4000 3997.34 0.07  30 30.00 0.00 
17 370 366.81 0.86  4000 3997.33 0.07  20 21.96 9.78 
18 440 436.44 0.81  5200 5185.45 0.28  80 80.00 0.00 

19 440 445.25 1.19  5200 5216.54 0.32  100 100.07 0.07 
20 440 445.12 1.16  5200 5212.34 0.24  200 199.37 0.63 
21 450 443.60 1.42  5250 5230.60 0.37  100 100.00 0.00 

 

Table 3. Prediction performance of SVR model 
Response MAE MAPE (%) 𝑅2 

𝑇𝑐( 𝐶 
0 ) 1.70 0.73 0.999 

𝑀𝑠(𝑇) 12.83 0.28 1 
  4.80 2.44 1 



International Journal of Science Vol.8 No.3 2021                                                             ISSN: 1813-4890 

 

87 

 

The Fig. 1 is the comparison between the experimental values and results predicted by SVR. From 

Fig. 1 one can see that the most points lie on or very close to the straight-line with slop 1 (except No. 

20 for 𝜀). This demonstrates that the predicted values are in quite good agreement with the measured 

values, and also illustrates that the constructed SVR model possess good generalization ability. 
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Fig. 1 Comparison of experimental values vs estimated values 
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Figure 2 depicts the percentage error distribution of structure insensitive properties calculated by 

SVR-LOOCV. From Fig. 2, it can be seen that most percentage errors of structure insensitive 

properties predicted by SVR are near x=0 on both sides. These demonstrate that the predicted values 

of SVR-LOOCV are in good agreement with the experimental values, and also illustrates that the 

constructed SVR-LOOCV model possess good generalization ability. 
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Fig. 2 Plot of the percentage error distribution of structure insensitive properties calculated by SVR-

LOOCV 

4. Conclusion 

In this paper, the model for predicting the structure insensitive properties of NiZn ferrite under five 

different synthesis parameters was set up by using support vector regression approach combined with 

particle swarm optimization. The prediction results show that the structure insensitive properties is a 

multi-variable, nonlinear system. The effect of the mole percent content of chemical compositions on 

structure insensitive properties is very complicated. The predicted errors of SVR are small. The 

established model possesses strong generalization ability. The predicted values are consistent quite 

well with the experimental values. 
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