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Abstract 

Rolling bearings are one of the most frequently faulty components in wind turbines. Timely 

bearing fault diagnosis can minimize economic losses and accident losses. For deep learning 

fault diagnosis methods, there are internal black box problems and traditional interpretability 

methods cannot reach Two-way optimization problem of interpretability and accuracy, a gate 

structure sparse neural network based on the LRP method is proposed. By designing an 

interpretable adaptive sparse gate structure, the weight of the sparse gate is adaptively adjusted 

to filter the input information of the DNN , So that the model achieves the purpose of sparseness. 

The experimental results show that the correct rate of fault diagnosis for rolling bearings using 

this method is 97.11%, which is 4.74% higher than that of the traditional DNN, which verifies 

the effectiveness of the method. 
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1. Introduction 

Rolling bearing is one of the most important parts in mechanical equipment, and its running state 

directly affects the performance of the equipment, so it is of great significance to diagnose the fault 

of rolling bearing. In recent years, deep learning has been widely used in rolling bearing fault 

diagnosis. Deep learning can achieve complex function approximation by learning a deep nonlinear 

network structure,characterize the distributed representation of input data,and demonstrate a powerful 

learning data set from a small number of samples. The ability of essential characteristics has received 

extensive attention from various fields.Deep learning has been extensively studied especially in the 

aspect of machinery condition monitoring,and is superior to several other machine learning 

techniques [1]. In the field of fault diagnosis, according to the different network structure, researchers 

have in-depth research and application of structural frameworks:Convolutional neural network 

method, deep belief network-based method and stacked autoencoder-based method,recurrent neural 

network. 

Convolutional neural network is a highly efficient algorithm for visual image processing and analysis. 

The CNN network is composed of a deep feedforward neural network. The convolutional neural 

network can handle high dimensionality and high nonlinearity under supervised learning. Compared 

with other image classification algorithms, the preprocessing process is less. Existing literature 

usually uses CNN network for feature extraction and feature recognition. Janssens et al [2]. proposed 

a one-dimensional convolutional neural network that uses the discrete Fourier transform of 

normalized vibration signals to diagnose bearing faults. Guo et al [3]. proposed a layered method 

based on convolutional neural network to diagnose bearing faults from raw vibration signals. A 

convolutional neural network with a new adaptive learning rate is used to diagnose the fault type, and 

then the separately trained convolutional neural network is used to determine the severity of the fault. 

Recurrent neural network is a neural network that is good at processing time series. The topological 

structure guarantees the time memory ability of the neural network, and the length of time represents 

the depth of the network. Guo et al [4]. applied cyclic neural network to the fault detection of power 

transmission and transformation system of unstructured data, and compared the influence of different 

network parameters on the diagnosis results. Moustapha et al [5]. applied cyclic neural network to 
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sensor node fault detection, Using RNN to identify and fault detection of sensor nodes in the wireless 

sensor network, and compared with the Kalman filter method. The simulation example shows the 

effectiveness of the method. 

The deep belief network is formed by stacking multiple layers of restrictive Boltzmann machines. 

Restricted Boltzmann machine is an energy probability generation model. It consists of a visible layer 

and a hidden layer. The visible layer and the hidden layer are connected by weights. Tao et al. use 

deep belief networks to diagnose rolling bearing faults. Compared with shallow learning methods, 

DBN can improve the accuracy of rolling bearing fault diagnosis and accurately identify rolling 

bearing faults. Deng et al [6]. extracted wavelet decomposition energy spectrum characteristics, time 

and frequency characteristics of the original signal, as the input of the DBM fault diagnosis model, 

the experimental results showed that the latter two can effectively characterize the fault information, 

which proves that the DBM is used for fault diagnosis. Choosing low-level features can get 

satisfactory results. Meng G et al [7]. introduced a deep trust network to classify fault types, and 

proposed a new hierarchical diagnosis network, which uses a two-level diagnosis network with 

wavelet packet energy characteristics to collect hierarchical deep belief networks for hierarchical 

identification of mechanical systems. Experiments The results show that HDN has high reliability for 

multi-stage accurate diagnosis and can overcome the overlap problem caused by noise and other 

interference. 

Autoencoder is an unsupervised learning algorithm, composed of three layers: input layer, hidden 

layer and output layer. Stacked autoencoders are formed by stacking multiple autoencoders. The deep 

neural network (DNN) based on SAE can achieve more intuitive deep learning. DNN can effectively 

extract the fault characteristics of mechanical equipment and avoid the problem of falling into local 

optimality. In bearing fault diagnosis, the extracted vibration signals are mostly one-dimensional 

sequence data. The autoencoder has a simple structure, and the deep neural network based on stacked 

autoencoders has certain advantages in processing time series signals. It can directly process one-

dimensional time series signals and eliminate redundant information in the data. The structure is 

simple and easy to implement. Muhammad et al [8]. apply batch normalization to each layer of the 

autoencoder before the activation function, which reduces the difficulty of training. The bearing data 

verifies that the batch normalized stacked sparse autoencoder has good fault diagnosis performance. 

Chen et al [9]. used the greedy training method to train the stacked noise reduction autoencoder, 

which has higher fault diagnosis accuracy compared with traditional PCA and stacked autoencoder. 

Lu et al [10]. directly use deep neural network (DNN) for signal feature extraction, and the obtained 

features can accurately and identifiably describe the bearing signal data, which is of great significance 

to the completion of fault diagnosis. The experiment proves that DNN is a kind of signal data A 

powerful tool for feature extraction. 

Deep neural networks based on stacked autoencoders have been extensively studied in fault diagnosis. 

Fault diagnosis methods based on neural networks have a major limitation, that is, the "black box" 

nature of their diagnostic decision-making and learning processes. In order to solve this problem, an 

explanation method based on back propagation is proposed. The core idea is to use the back 

propagation mechanism to propagate the decision importance signal of the model from the output 

layer neurons of the model to the input of the model to derive the input samples. Feature importance. 

Methods such as Grad [11], GuidedBP [12] and Integrated [13] use this core idea to explain. However, 

the saliency maps obtained by these three methods through backpropagation usually contain a lot of 

visually visible noise. For this reason, Smilkov D et al [14]. proposed a smooth gradient 

backpropagation interpretation method, which passes through the input sample The introduction of 

noise solves the visual noise problem in Grad and other methods. Although the above method based 

on gradient backpropagation can locate the decision features in the input sample, it cannot quantify 

the contribution of each feature to the model decision result. Bach S et al [15]. proposed a layer-wise 

relevance propagation method to calculate the contribution of a single pixel to the prediction result 

of the image classifier. The general form of the LRP method assumes that the classifier can be 

decomposed into multiple computational layers. Each layer can be modeled as a multi-dimensional 
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vector and each dimension of the multi-dimensional vector corresponds to a correlation score. The 

core of LRP is Backpropagation is used to recursively propagate the correlation score of the high-

level to the low-level until it reaches the input layer. Interpretation methods based on backpropagation 

are usually simple to implement, computationally efficient, and make full use of the structural 

characteristics of the model. John et al [16] proposed an interpretable deep convolutional neural 

network for fault diagnosis of gearboxes. Use vibration signal as time series data, classify by wavelet 

transform and discrete cosine neural network, use LRP method to decompose the contribution of the 

local area in the spectral image to the classification result, and determine the time-frequency point in 

the spectral image to the fault type And the degree of contribution to severity identification. Grezmak 

et al [17]. proposed an interpretable convolutional neural network for machine fault diagnosis through 

hierarchical correlation propagation. Using LRP as an indicator, they studied the performance of 

training CNN on time-frequency spectrum images of vibration signals measured on induction motors. 

It can be seen that the LRP index can be used to quantify the relationship between the output of each 

layer of neurons through its back-propagation calculation method, so as to achieve the purpose of 

interpretability. 

Deep neural network With the continuous increase of network depth and network neurons, the 

network structure is becoming more and more redundant. In order to solve the above problems, trying 

to take appropriate sparse methods for the network will effectively improve the diagnosis effect of 

the network. This chapter proposes a sparse method based on network interpretable parameters. The 

LRP method can be used to quantify the correlation between the input and the output result, and the 

quantization value is used as a criterion to combine with the sparse gate structure to design an 

interpretable adaptive sparse gate structure, referred to as IAS gate. This soft threshold gate structure 

is applied to a deep neural network, and the weight of the sparse gate is adaptively adjusted to filter 

the input information, so that the network achieves the purpose of sparseness, and IAS-DNN is used 

to achieve interpretability and two-way optimization of the neural network. For the first time, it is 

proposed to use network interpretability index to adjust network parameters adaptively. 

2. Related technical principles 

2.1 Basic knowledge 
2.1.1 AE feature extraction process 

Autoencoder is considered to be a very useful basic model in the field of deep learning.It is a special 

type of feedforward neural network composed of an encoder and a decoder.The encoder is composed 

of an input layer and a hidden layer, and the output It is composed of a hidden layer and an output 

layer, and has a symmetrical structure.Autoencoder is a kind of neural network,it is an unsupervised 

learning method,the goal is to make the output equal to the input. Its structure is shown in Figure 1. 

In this model, the encoder uses nonlinear mapping to compress the input data to obtain the 

characteristic representation of the data;the decoder reconstructs the network and maps it to the output 

space to obtain the reconstructed representation of the input.The training process of AE is to optimize 

the network parameters by minimizing the reconstruction error,so that the output is as close to the 

input as possible. 

...

...

...Encoder decoder  

 

Fig. 1 AE basic model structure diagram 
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Given an unlabeled sample set {𝑥𝑖
𝑘}, (𝑖 = 1,2, . . . , 𝐼 ; 𝑘 = 1,2, . . . , 𝐾), in which 𝑖  epresents sample 

dimensions, 𝑘 Indicates the number of samples, the encoding process of the encoder is shown in the 

formula (1): 

ℎ𝑖 = 𝑓𝜃(𝑥𝑖) = 𝜎(𝑊𝑥𝑖 + 𝑏)                                                     (1) 

Among them, 𝑓𝜃  is the coding function, 𝜎 is the activation function, usually the Sigmoid function, 𝑊 

is the network weight matrix between the autoencoders, that is, the weight matrix between the input 

layer and the hidden layer, 𝑏  is the bias vector in the coding network, 𝜃 = {𝑊, 𝑏} is Combine weights 

and biases together as a connection parameter between the input layer and the hidden layer. The 

general form of the sigmoid function is shown in formula (2): 

𝜎(𝑥) = 𝑙𝑜𝑔( 1 + 𝑒−𝑥)                                                         (2) 

Similarly, for the decoding network, the encoding vector ℎ obtained by the encoding network is 

reconstructed through the decoding network to obtain 𝑦𝑖 which is equal to the input, that is, 𝑦𝑖 is equal 

to the input 𝑥𝑖. The decoding process is shown in equation (3): 

𝑦𝑖 = 𝑔𝜃𝑇(ℎ𝑖) = 𝜎(𝑊𝑇ℎ𝑖 + 𝑑)                                                   (3) 

Where 𝑔𝜃𝑇
 
is the decoding function, 𝜎 is the activation function of the encoding process, 𝑊𝑇  is the 

network weight matrix from the hidden layer to the output layer, and 𝑑 is the bias vector generated 

during the encoding process. 

The essence of the process of training AE is the training and optimization of the network parameter 

𝜃 and 𝜃𝑇 In order to make the output 𝑦𝑖 as close to the input 𝑥𝑖 as possible, the closeness between the 

input and the output is characterized by minimizing the reconstruction error 𝐽𝐴𝐸(𝑥, 𝑦 ; 𝜃 , 𝜃𝑇), as 

shown in equation (4): 

𝐽𝐴𝐸(𝑥, 𝑦 ; 𝜃 , 𝜃𝑇) =
1

𝑚
||𝑦 − 𝑥||2                                                  (4) 

In each training process, the gradient descent method is used to update the AE network training 

parameters and the entire parameter update process is as follows 

𝑊 = 𝑊 − 𝛼
𝜕

𝜕𝑊
𝐽𝐴𝐸(𝑥, 𝑦 ; 𝜃 , 𝜃𝑇)                                                  (5) 

𝑊𝑇 = 𝑊𝑇 − 𝛼
𝜕

𝜕𝑊𝑇 𝐽𝐴𝐸(𝑥, 𝑦 ; 𝜃 , 𝜃𝑇)                                               (6) 

𝑏 = 𝑏 − 𝛼
𝜕

𝜕𝑏
𝐽𝐴𝐸(𝑥, 𝑦 ; 𝜃 , 𝜃𝑇)                                                     (7) 

𝑏𝑇 = 𝑏𝑇 − 𝛼
𝜕

𝜕𝑏𝑇 𝐽𝐴𝐸(𝑥, 𝑦 ; 𝜃 , 𝜃𝑇)                                                   (8) 

Among them, 𝛼 is the learning rate, 
𝜕

𝜕𝑊𝑖
𝐽𝐴𝐸(𝑥, 𝑦 ; 𝜃 , 𝜃𝑇) and 

𝜕

𝜕𝑏𝑖
𝐽𝐴𝐸(𝑥, 𝑦 ; 𝜃 , 𝜃𝑇) are calculated using 

the back propagation algorithm, and the gradient direction. 

2.1.2 Deep neural network training 

The deep neural network constructed in this paper is a multi-hidden neural network stacked by 

multiple autoencoders. In the unsupervised learning stage, bottom-up layer-by-layer feature 

extraction is used, and the output of the previous autoencoder is used as the latter. Input from the 

encoder. Then, the result of unsupervised layer-by-layer feature representation is used as the initial 

value of the backpropagation optimization algorithm, supervised parameter fine-tuning, and more 

abstract feature representations are extracted from the original input information. 

Given an unlabeled input data x as the input of the encoder, the hidden layer feature ℎ1 of the first 

autoencoder 𝐴𝐸1  and the network parameter 𝜃1 = {𝑊1, 𝑏1} of the first layer are obtained through 

unsupervised training, and then ℎ1 will be used as the second autoencoder The input of the 𝐴𝐸2, 

through unsupervised training, the hidden layer feature ℎ2 of 𝐴𝐸2 and the network parameter 𝜃2 =
{𝑊2 , 𝑏2} of the second layer are obtained. Repeat the above process to obtain the last hidden layer 

feature ℎ𝑁 of the autoencoder 𝐴𝐸𝑁 and the network parameter 𝜃𝑁 = {𝑊𝑁 , 𝑏𝑁} of this layer. 
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Then the extracted feature ℎ𝑁 is used as the input of the Softmax classifier, and the labeled dataset 
{1,2, ⋯ , 𝐾} is used as the output to train the Softmax classifier. For an observation sample 𝑥(𝑚) =
[𝑥1(𝑚), 𝑥2(𝑚), ⋯ , 𝑥𝑘(𝑚)] at time m, first use it as the input of the deep neural network to obtain the 

hidden layer feature ℎ𝑁(𝑚), and then input ℎ𝑁(𝑚) into the trained Softmax classifier to obtain the 

classification result of the observation sample 𝑥(𝑚). 

𝑙𝑎𝑏𝑒𝑙(𝑚) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗=1,2,⋯,𝐾

{𝑝(𝑙𝑎𝑏𝑒𝑙(𝑚) = 𝑘|𝑥(𝑚) ; 𝜃)}                                (9) 
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Among them, 𝜃 = [𝜃1, 𝜃2, ⋯ , 𝜃𝑘] is the model parameter of the Softmax classifier, which is similar 

to the autoencoder model. In order to ensure the accuracy of classification, the cost function 𝐽𝜃  is 

minimized to optimize the network parameters of the model. The cost function of the training process 

of the Softmax classifier is shown in equation (10), and its network parameters can be obtained by 

minimizing 𝐽𝜃(𝑥(𝑚)). 

The last is the reverse fine-tuning optimization process of SAE, which uses a supervised back-

propagation algorithm.Use labeled data to optimize and fine-tune the parameters of the entire deep 

neural network, and complete the fine-tuning process by minimizing the reconstruction error 𝐸(𝜃). 

The optimization update process of the parameters is as follows: 

𝜃 = 𝜃 − 𝛼
𝜕𝐸(𝜃)

𝜕𝜃
                                                            (11) 

𝐸(𝜃) =
1

𝑀
∑ 𝐽𝜃(𝑌′, 𝑇𝑘 ; 𝜃)                                                     (12) 

In which, 𝑇𝑘 is the known label data set, 𝑌′ is the actual output of the deep neural network, 𝛼 is the 

learning rate, 𝜃 and is the model parameter of the Softmax classifier. The model parameters 𝜃 can be 

optimized by formulas (11) and (12). 

2.1.3 Layer-wise Relevance Propagation 

In the LRP method, attribute scores, called relevance scores, are used to calculate the structure of the 

classifier in a top-down manner. For neural network classifiers, the relevance score is propagated 

from the output. The output layer relevance score is usually regarded as the output layer pre-activation 

value corresponding to the class of the associated score, and the value corresponding to the class that 

requires the relevance score is obtained by forwarding the input. The correlation score is propagated 

to the previous layers, so that the sum of the correlation scores for each layer is constant. 

𝑓(𝑥) = ⋯ = ∑ 𝑅𝑑
(𝑙+1)

𝑑∈𝑙+1 = ∑ 𝑅𝑑
(𝑙)

𝑑∈𝑙 = ⋯ = ∑ 𝑅𝑑
𝑙

𝑑                              (13) 

Where 𝑓(𝑥) is the real-valued prediction output, 𝑅𝑑
(𝑙)

 is the neuron d of the 𝑙 th layer. For the fully 

connected layer, there are several methods to propagate the correlation with the previous layer, and 

at the same time satisfy the above formula, use the 𝑧 -rule, and its correlation The propagation formula 

of is: 

𝑅𝑖
(𝑙)

= ∑
𝑧𝑖𝑗

∑ 𝑧𝑖′𝑗𝑖′
𝑗 𝑅𝑗

(𝑙+1)
                                                        (14) 

Where 𝑧𝑖𝑗 is the contribution of activation at neuron 𝑖 to the total pre-activation of neuron 𝑗, which is 

defined as 𝑧𝑖𝑗 = 𝑎𝑖
(𝑙)

𝜔𝑖𝑗
(𝑙,𝑙+1)

, where 𝑎𝑖
(𝑙)

 is the activation of neuron i in layer 𝑙, and 𝜔𝑖𝑗
(𝑙,𝑙+1)

 is the 

weight that connects neuron 𝑖 and 𝑗. The 𝑧 -rule of relevance propagation, the relevance score can 

bear both positive and negative values. Since the probability of an input belonging to a certain class 

is ultimately measured by the value of its corresponding output layer neuron, the correlation score 
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can represent evidence of classification decision. Through the global analysis of the input correlation 

score, the region in the input with a large correlation score can be used as an indication of the mode 

that contributes the most to the classification decision. Based on the correlation score, the improved 

deep neural network can be explored from the interpretability level.  

2.2 Sparse neural network of gate structure based on LRP method 

For traditional sparse gates, the correlation of each neuron to the classification results is calculated 

through each training process, and the sparse gate is set using its size as the basis for discrimination, 

and each layer of the network is effectively sparsed according to the correlation size through an 

adaptive method. In essence, it is an improvement of the neural network structure, and it is not 

interpretable. 

This section proposes an adaptive sparse gate algorithm based on network interpretability index 

design. Find out the interference information in the feature extraction process from the interpretable 

level, and suppress it in a targeted manner. The remaining relevant useful information is propagated 

to the next layer to achieve the network sparse process. After suppression, the training parameters are 

all parameters that contribute greatly to the output. So as to achieve the purpose of improving the 

accuracy of network training. 

The design of the IAS gate is shown in Figure 2. 

 

Rf        Non-linear
 

Fig. 2 IAS gate diagram 

 

The red nodes in the figure represent the correlation parameters calculated based on the LRP 

algorithm for each layer of neurons, and the blue nodes represent the neurons of the sparse gate. When 

the correlation parameter of a neuron is processed by a layer of neurons, a set of sparse indicators is 

given, and its dimension is the same as the number of neurons, that is, each neuron has a sparse 

indicator, and it is between 0 and 1. During the optimization training process of the network, the 

parameters of the sparse gate are optimized and adjusted synchronously, so that the self-adaptation 

of the sparse value of the network is realized. 

Use correlation to control the degree of opening and closing of the sparse gate. The sparse process is 

as follows. First, in each forward process, the correlation matrix 𝑅 
(ℎ𝑖)  of each layer and node is 

calculated, and normalized, so that the correlation score is mapped In the range of [0,1]. 

𝑅𝑛𝑜𝑟𝑚
(𝑙𝑖)

=
𝑅 

(𝑙𝑖)−𝑅
𝑚𝑖𝑛

(𝑙𝑖)

𝑅𝑚𝑎𝑥  
(𝑙𝑖)

−𝑅
𝑚𝑖𝑛

(𝑙𝑖)                                                          (15) 

Use the normalized correlation value as the input of the gate to control the IAS gate. IAS gateis a 

group of neurons whose output dimension is consistent with the number of neurons in this layer. The 

number of neuron layers can also be set flexibly 
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𝐼(𝑅𝑛𝑜𝑟𝑚
(𝑙𝑖)

) = 𝜎(𝑊𝐼𝑅𝑛𝑜𝑟𝑚
(𝑙𝑖)

+ 𝑏𝐼)                                                (16) 

In the formula: 𝑊𝐼  and 𝑏𝐼 are the weights and biases of the sparse gate, and the 𝜎 function is the 

nonlinear function of the sparse gate. In order to ensure that the output of the nonlinear function is in 

the range of 0 to 1, the nonlinearity is shown in formula (4): 

𝜎(𝑥) = 𝑙𝑜𝑔( 1 + 𝑒−𝑥)                                                      (17) 

Because the correlation score represents the contribution of the input data to a certain extent, and the 

degree of opening and closing of the gate is adjusted by the size of the correlation score, through the 

sparse gate, the data with large correlation can be passed quickly, and the data with small correlation 

can be effectively suppressed, To achieve the purpose of sparsity, which can better extract features. 

In the training process of the network, according to each round of prediction output, the LRP value 

of each layer is calculated, and the LRP value of this layer is normalized and sent to the sparse gate 

neural layer of the layer as the input value adaptive Adjust the sparse ratio of each layer. The sparse 

neural network model with gate structure based on the LRP method is shown in Figure 3. 

 

ih

LRP

Rf

Lh

LRP

Softmax

iX

threshold threshold

Rf

Non-linear Non-linear

 

Fig. 3 DNN structure diagram with IAS gate structure 

 

The DNN structure with the IAS gate structure uses the LRP value based on the DNN network to 

adaptively adjust the sparse value of the sparse gate, and then the output value of the layer of neurons 

passes through the sparse gate, so that the neural network achieves the goal of sparseness. 

Assuming that the input feature of each layer is h, and the weight w and bias b of the neurons in this 

layer are sums respectively, then the output of the neurons in this layer is: 

𝐻(ℎ𝑖) = 𝜎𝑖(𝑊𝑠ℎ𝑖 + 𝑏𝑠
)
                                                      (18) 

The output value of the neuron of the diagnosis network is multiplied by the threshold value of the 

IAS gate output to obtain the output of the neuron of this layer, as shown in formula (19) 

ℎ𝑖+1 = 𝐼(𝑅𝑛𝑜𝑟𝑚
(𝑙𝑖)

) ∘ 𝐻(ℎ𝑖)                                                      (19) 

In the formula, 1 is the dot product symbol, which means that the corresponding elements are 

multiplied as the input of the next hidden layer, and so on. The process of IAS-DNN is: first, process 

the collected data, and then initialize the network parameters randomly. Then, the training data is 
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forward propagated in the network, and the prediction output is calculated in the process of forward 

propagation. At the same time, the correlation score 𝑅 
(ℎ𝑖) between each layer and the prediction result 

is calculated backward, and the parameters are updated. When the network parameters meet the 

optimization goal, the network parameter update is stopped, the network parameters are saved, and 

the online diagnosis mode is entered. 

3. Experimental Results 

In order to verify the feasibility of the algorithm, a simulation experiment was carried out on the 

proposed algorithm.This paper takes rolling bearings as the fault diagnosis object to verify the 

effectiveness of the IAS-DNN fault diagnosis method. 

The experimental data used in this chapter is the open source bearing test data set provided by the 

Bearing Data Center of Case Western Reserve University in the United States. There are three types 

of failures and one normal state for the types of failures involved in the experiment. The three types 

of failures are: inner ring failure; outer ring failure; ball failure. 

Collect the vibration signal of the motor drive end bearing under different load conditions.The data 

collected by the sensor contains four health states: inner ring fault, outer ring fault, rolling ball fault 

and normal. This experiment uses a normal data set and three fault data sets. The three sets of failure 

data are that the load is 3 horsepower, the size of the failure is 0.007 inches, and the types of failures 

are inner ring failure, outer ring failure, and ball failure. The sampling frequency of the vibration 

sensor is 12kHz, and the motor speed is set to 1772. There are about 450 sampling points per lap. 

This experiment selects two-period timing signals as the input signal of the diagnostic network, and 

the input data dimension is 900 dimensions. For each type of failure, select 2000 sets of training data, 

a total of 8000 sets, and 2000 sets of test data. In order to compare the influence of different depth 

DNNs and different neuron redundancy levels on the diagnosis network, the design of the network 

parameters is shown in Table 1 and Table 2. 

 

Table 1. 5-layer DNN network parameter settings 

parameter Input layer 1st hidden layer 2nd hidden layer 3rdhidden layer Output layer 

Net1 900 1000 100 50 4 

Net2 900 1300 500 100 4 

Net3 900 1800 1000 200 4 

 

Table 2. 6-layer DNN network parameter settings 

parameter Input layer 1sthidden layer 2ndhidden layer 3rdhidden layer 4thhidden layer Output layer 

Net1 900 1000 500 100 50 4 

Net2 900 1300 900 500 100 4 

Net3 900 1800 3000 1000 200 4 

 

Table 3. Comparison table 1of diagnostic accuracy of different network parameters 
Net Data set 1 2 3 4 5 

Net1 DDN 
Training 97.95 97.06 98.50 98.77 97.36 

Testing 92.72 92.73 92.98 92.94 92.10 

Net1 IAS-DDN 
Training 100 100 100 100 100 

Testing 96.89 96.03 95.86 96.15 96.35 

Net2 DDN 
Training 98.75 98.70 98.79 99.02 98.75 

Testing 93.69 92.86 93.80 93.52 93.26 

Net2 IAS-DDN 
Training 100 100 100 100 100 

Testing 95.65 96.52 96.18 96.42 96.56 

Net3 DDN 
Training 99.61 98.61 99.27 97.52 95.52 
Testing 95.12 92.79 94.73 91.75 90.78 

Net3 IAS-DDN 
Training 100 100 100 100 100 

Testing 97.09 96.36 96.77 96.56 96.93 
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In order to effectively measure the sparse ability of the proposed sparse network, a comparative 

experiment was carried out with traditional DNN. The method of increasing the depth of the network 

by increasing the number of neurons makes the number of neurons in the network have a larger 

number of redundant neurons. The optimization goal setting is the same, and the experimental 

comparison conclusion is given in the next section. 

The Loss function optimization goals of the three network structures are set to 0.001 respectively to 

compare the diagnostic accuracy of the traditional DNN and IAS-DNN on the training data set and 

the test data set. Carry out 10 experiments respectively, and compare the experimental results. The 

experimental results are shown in Table 3 and Table 4 

 

Table 4. Comparison table 1of diagnostic accuracy of different network parameterrs 

Net Data set 1 2 3 4 5 

Net4 DDN 
Training 96.63 97.68 96.81 97.79 97.16 

Testing 91.58 93.08 91.53 92.10 91.95 

Net4 IAS-DDN 
Training 99.45 100 100 100 100 

Testing 94.80 95.51 94.32 95.06 94.93 

Net5 DDN 
Training 97.18 97.32 97.91 98.53 97.18 

Testing 92.96 91.88 93.01 92.48 91.29 

Net5 IAS-DDN 
Training 100 100 100 100 100 

Testing 97.08 96.97 96.37 96.42 95.86 

Net6 DDN 
Training 97.94 98.86 97.98 97.55 94.51 

Testing 92.51 94.17 93.96 92.18 89.03 

Net6 IAS-DDN 
Training 100 100 100 100 100 

Testing 97.87 97.17 96.01 96.67 97.83 

 

The above network diagnosis accuracy comparison shows that with the increase of network neurons, 

the traditional DNN method can achieve better diagnosis accuracy for the training set, and slightly 

improve the diagnosis result for the test set, but the effect is not obvious. 

 

Table 5. Comparison of average diagnosis accuracy of 6 network structures 
Net Net 1 Net 2 Net 3 Net 4 Net 5 Net 6  

DNN 97.92 98.80 98.10 97.21 97.62 97.36 
Training 

IAS-DNN 100 100 100 99.89 100 100 
DNN 92.69 93.42 93.03 92.05 92.32 92.37 

Testing 
IAS-DNN 96.25 96.26 96.74 94.92 96.54 97.11 

 

Comparing the diagnosis networks of the six structures, it is obvious that the improved IAS-DNN 

network based on the network interpretability sparse gate is better than the traditional DNN in both 

the training accuracy of the test set and the diagnosis accuracy of the test set. Great improvement. It 

is also worth pointing out that the IAS-DNN diagnosis network will not have a significant impact on 

the diagnosis results as the network structure changes, that is to say, the redundant structure of the 

network designed based on IAS-DNN will not affect the diagnosis accuracy of the entire network. 

4. Conclusion 

Based on the network interpretability index LRP, this chapter proposes an improved soft threshold 

sparse gate structure to sparse the traditional DNN. First, the role and significance of sparse methods 

for deep neural networks are introduced, and then the defects of hard sparse methods and the 

interpretability limitations of existing soft threshold sparse gates are summarized. Based on the above 

analysis, a soft threshold sparse gate structure based on the improvement of interpretability 

parameters is proposed. The specific algorithm flow of the fault diagnosis method of DNN with 

improved sparse gate structure is given. Finally, a detailed comparison of the improvement degree of 

the method proposed in this paper compared with the traditional DNN method is carried out through 
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experimental simulation. The experimental results show that the method proposed in this paper can 

effectively avoid the over-fitting of the diagnostic network and effectively improve the accuracy of 

the network. 
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