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Abstract 

This paper exploits two variable density methods based on proportional topology optimization 

(PTO) to solve the topology structure optimization problems. These two methods can solve 

different problems with minimum volume or minimum compliance. Also, the present methods 

in this paper has a high application value. In order to contrast the difference between the SIMP 

method and RAMP method, one numerical example is investigated to provide to observe their 

differences. 
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1. Introduction 

Topology optimization can achieve the best bearing effect with the least material, so it has been 

widely applied to practical engineering. Many experts developed some advanced methods which are 

applied to practical engineering problems [1-4]. Also, many experts have proposed a great deal of 

topology optimization methods. Bendsøe [5] proposed the homogenization method that was 

universally applied to the optimization of microstructure. The SIMP method [6] and RAMP method 

[7-8] are variable density methods with continuous variables. The evolutionary structural 

optimization (ESO) method [9], Bi-directional ESO (BESO) method [10], and sequential element 

rejections and admissions (SERA) method [11] are variable density methods with discrete variables. 

The independent continuous mapping (ICM) method [12] isa variable-density method implemented 

by the continuous conversion of continuous and discrete variables. The level set method (LSM) [13] 

was proposed based on partial differential equation. The moving morphable components (MMC) 

method [14] and moving morphable void (MMV) method [15] were proposed based on the 

topological description functions of the components. The proportional topology optimization (PTO) 

method [16] is a non-sensitivity method for topology. Whether it is the minimum volume problem 

under stress constraints or the minimum compliance problem under volume constraints, the PTO 

method can always solve it. 

This paper adopted the SIMP method and RAMP method to calculate the Young’s modulus, and the 

topology optimization model is solved by the proportion topology optimization method. The results 

obtained by the SIMP method and RAMP method are contrast with each other, and their performances 

are compared. 

2. Basic theory 

There are two optimization models of PTO method. One is to take the minimum volume as the 

objective function and the Von-Mises stress as the constraint condition. The other is to take the 

minimum compliance as the objective function and the volume as the constraint condition. 
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(1) Stress constrained problem. The objective function of this kind of problem is the minimum mass 

of the structure and the constraint is that the stress is less than the allowable stress measure. 
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where 𝜌𝑖 denotes the density of element, 𝜌𝑚𝑖𝑛  and 𝜌𝑚𝑎𝑥  denotes the lower bound and upper bound 

of density respectively; 𝑣𝑖 denotes the volume of element; 𝑲 denotes the stiffness matrix; 𝑼 denotes 

the displacement vector; 𝑭 denotes the load vector; 𝜎𝑖 is the element stress; 𝜎𝑙𝑖𝑚   is the stress measure. 

Based on the theory of PTOs method, the optimized element density 𝜌𝑖
opt

 can be obtained as 
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where 𝑀remain denotes the remaining material amount; 𝑞 denotes the proportion exponent. 

(2) Minimum compliance problem. The objective function of this problem is the minimum 

compliance and the constraint is that the total mass is equal to preset mass. 
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Where 𝐶 denotes the compliance; 𝑀 denotes the total mass. 

Based on the theory of PTOc method, the optimized element density 𝜌𝑖
opt

 can be obtained as  
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In order to assure the stability of the iteration process, parameter 𝛼 is adopted. Furthermore, the 

update formula of element density is given as 

𝜌𝑖
new = 𝛼𝜌𝑖

pre
+ (1 − 𝛼)𝜌𝑖

opt
                                                      (3) 

In general, the value of 𝛼 is set to 0.5. After actual debugging, we find that: if the value of 𝛼 is less 

than 0.5, we could not obtain the ideal structure.  

Whether it is the volume minimum model or the compliance minimum model, the density filter is 

universal. Besides, the implementation of density filter is shown as follows. 

𝜌𝑖 =
∑ 𝑤𝑖𝑗𝑑𝑗

∑ 𝑤𝑖𝑗
                                                                   (6) 

𝑤𝑖𝑗 = {

𝑟0−𝑟𝑖𝑗

𝑟0
𝑟𝑖𝑗 < 𝑟0

0 𝑟𝑖𝑗 ≥ 𝑟0

                                                          (7) 

where 𝑑𝑗 denotes the non-filtered element 𝑗; 𝑤𝑖𝑗  denotes the filtering weight of element 𝑖 and 𝑗; 𝑟𝑖𝑗 

denotes the distance of element 𝑖 and 𝑗; 𝑟0 denotes the filter radius. 

The interpolation formula of Young’s module includes two categories. Such as, the SIMP method, 

RAMP method. 

(1) The SIMP method. The interpolation formula of Young’s module is defined as follows: 

𝐸𝑒(𝜌) = 𝐸𝑚𝑖𝑛  + 𝜌 
𝑝(𝐸0 − 𝐸𝑚𝑖𝑛  )                                                 (3) 

Where 𝐸0 denotes the Young’s modulus; 𝐸𝑚𝑖𝑛   is a very small number, and 𝑝 is a penalization factor.  

(2) The RAMP method. The interpolation formula of Young’s module is shown as follows: 
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After some transformation, we can obtain: 

𝐸𝑒(𝑥𝑒) = 𝐸𝑚𝑖𝑛  +
𝑥𝑒

1+𝑞(1−𝑥𝑒)
(𝐸0 − 𝐸𝑚𝑖𝑛  )                                           (5) 

The Von-Mises stress which corresponds to the two-dimensional examples with plane stress and 

bilinear square elements is given as 

𝜎Von-Mises = √𝜎𝑥
2 + 𝜎𝑦

2 + 𝜎𝑧
2 + 3𝜎xy

2                                                 (6) 

The stress tensor which corresponds to the two-dimensional examples is shown as follows: 

𝝈 = [𝜎𝑥 𝜎𝑦 𝜎xy]𝑇 = 𝑫𝑩𝑼                                                     (7) 
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where 𝑫 denotes the constructive matrix; 𝑩 denotes the shape function matrix; 𝜈 denotes the Poisson 

ratio; L denotes the element edge length.  

3. Cantilever beam 

A cantilever beam shown in Fig.1 is investigated in this section. The left surface is fixed, and the 

force is exerted on the center of right surface. 

 

Fig. 1 A cantilever beam 

 

Herein, the number of nodes is 120×40, the external force is 1 and it exerts on element 3; The 

Poisson’s ratio is 0.3, and the radium of filter is 1.7. If the objective function is smallest volume and 

constraint condition is Von-Mises stress, the corresponding results are shown as Table 1. 

Some conclusion can be drawn from Table 1: 

(i) The iteration number of the RAMP method is larger than the SIMP method. Therefore, the 

convergence speed of the SIMP method is faster. 

(ii) The volume of the RAMP method is smaller than the SIMP method, but the compliance of the 

RAMP method is larger than the SIMP method. 
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(iii) During the iterative process, the Von-Mises stress of the RAMP method is stable, but that of the 

SIMP method fluctuates greatly. 

Herein, the number of nodes is 120×40, the external force is 1 and it exerts on element 3. The 

Poisson’s ratio is 0.3, and the radium of filter is 1.2. If the objective function and constraint condition 

are compliance and volume respectively, the corresponding results are shown as Table 2. 

 

Table 1. The contrast between the SIMP method and the RAMP method 

 SIMP RAMP 

Density   

Stress   

Iteratio

n 

curves 

  

Result 

Total iteration: 51 

Volume: 0.52 

Compliance: 178.61 

Von-Mises stress: 0.8 

Total iteration:61 

Volume: 0.50 

Compliance: 183.17 

Von-Mises stress: 0.8 
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Table 2. Shows the contrast between the SIMP method and the RAMP method. 

 SIMP RAMP 

Density   

Complianc

e 
  

Iteration 

curves 
  

Result 

Total iteration: 120 

Volume: 0.50 

Compliance: 173.91 

Von-Mises stress: 0.78 

Total iteration:171 

Volume: 0.50 

Compliance: 179.64 

Von-Mises stress: 0.79 

 

Some conclusion can be drawn from Table 2: 

(i) The iteration number of the RAMP method is larger than the SIMP method. Therefore, the 

convergence speed of the SIMP method is faster. 

(ii) The Von-Mises stress obtained by the RAMP method is larger than the SIMP method, and the 

compliance computed by the RAMP method is larger too. 

(iii) During the iterative process, the Von-Mises stress of the RAMP method is stable, but that of the 

SIMP method fluctuates greatly. 

(iv) The structure obtained by the RAMP method has numerous gray elements with density of 0.5. 
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4. Conclusion 

The Young’s modulus is calculated by the SIMP method or the RAMP method, and the topology 

optimization model is solved by the proportional topology optimization method. The computational 

results obtained by two kinds of variable density methods are compared with each other. Some 

conclusion can be drawn as follows: 

(i) The iteration number of the RAMP method is larger than the SIMP method. If the objective 

function is the smallest volume, the RAMP method can obtain a structure with smaller volume than 

the SIMP method. However, if the objective function is smallest compliance, the structure obtained 

by the RAMP method is inferior to that of the SIMP method. 

(ii) If the objective function is smallest volume, the structure obtained by the RAMP method is better 

than that of SIMP method; if the objective function is smallest compliance, the structure obtained by 

the SIMP method is better than the RAMP method. 

(iii) The iteration curve of the RAMP method is much better than the SIMP method. 
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