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Abstract 

The rational or irrational property of real numbers is an arithmetic property, and the rational 

or irrational characteristics of some important constants are closely related to the properties of 

integers and the distribution of prime numbers. The natural exponent e and pi π have attracted 

close attention of mathematicians as two of the most famous irrational numbers, of which the 

famous Euler formula relates the two. The exploration of the irrational nature of e and π 

themselves was first proposed by Olds in 1970 and Ivan in 1947, respectively, followed by many 

scholars who gave different methods of proofs. However, in fact, the systematic discussion and 

sorting out of the many proofs is not complete, except for the irrational character of the 

combinatorial numbers (sums, differences, products) of the two, which is also worth studying. 

This paper is devoted to exploring the construction methods and properties of the relevant 

auxiliary functions in the process of proving the irrational characterization of e and π and the 

combined numbers (sum, difference, product) of the two. The present study is divided into three 

main parts. We first investigate how to construct suitable auxiliary functions for e and π such 

that the proofs of the irrational properties of both can be described uniformly. We give a key 

auxiliary function and construct exponential and trigonometric differential equations based on 

the differences in the properties of e and π, respectively, from which we obtain some inferences 

that the irrational properties of e and its powerful forms can be proved uniformly, while the 

power forms of π require individualized construction of specific functions to prove them. 

Second, we investigate the proof that the sum e+π and the product e·π are irrational numbers, 

first by using the converse method to prove the existence of at most one rational number for the 

combination of the four operations of e and π. Subsequently, we discuss the sum and product 

of algebraic and non-algebraic numbers, pointing out that the subset of algebraic irrational 

numbers is a pseudo-ring without rational numbers, while the subset of non-algebraic irrational 

numbers is a pseudo-ring without algebraic rational numbers. Finally, we estimate the 

irrational properties of e+π and the product e-π based on the linear independence of w-

transformations and rational solutions and relate the algebraic closure of rational numbers to 

the solutions of rational polynomial equations to obtain several important conclusions. It is 

noteworthy that the study of linear irrelevance of solutions of rational numbers under a system 

of linear equations of general form is actually an important class of problems in Diophantine 

analysis, and the proof of the irrational character of e and π and the combined numbers (sums, 

differences, products) of the two using this line of thought is of high research value. 

Keywords 

Natural Exponents; pi; Irrational Properties; w-transform; Diophantine Analysis. 

1. Introduction 

When we talk about pi π, we are usually told that it is an infinite noncyclic decimal number called an 

irrational number. At the same time, when we study the natural exponent 𝑒, we learn that this number 

is also irrational. Coincidentally both of these numbers are irrational, thus π and 𝑒 become the two 

most famous irrational numbers known to people. However, since rational numbers have as many 

roots as natural numbers, there are far more irrational numbers in the real world than rational numbers, 

because rational numbers are countable, while irrational numbers are uncountable and have as many 

roots as all real numbers. Therefore, if we calculate the probability strictly, the probability that a point 
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chosen randomly from the number axis is an irrational number tends to be 100%. In this way, it is not 

surprising that both π and 𝑒  are irrational numbers, but these two numbers are very high in 

mathematics and often appear in various types of functions [1-11]. The mathematician Euler 

established Euler's formula. 

𝑒𝑖𝜋 + 1 = 0 (1.1) 

In mathematics, Euler's formula is one of the most fascinating formulas that connect several constants 

that are extremely important and highly characteristic in mathematics. Two transcendental numbers: 

the natural exponent 𝑒, the circumference π; two units: the imaginary unit 𝑖, the natural unit 1, and, 

as is common in mathematics, 0. Because of this, Euler's formula is known as the first formula of the 

universe. 

The rational or irrational nature of real numbers is an arithmetic property, so it is not surprising to 

encounter important constants [12-17], whose rational or irrational nature is related to the nature of 

integers and the distribution of primes [1,2], such as the number 
6

𝜋2 = ∏ (1 −
1

𝑝2)𝑝>2 . 

Moreover, mathematics is an extremely rigorous science, and to assert that both numbers are irrational 

would require giving proof. √2 is the first irrational number ever discovered by man, and the method 

and procedure of its proof are relatively concise and clear. The proof that π and e  are irrational 

numbers is a bit more complicated. In this paper, we want to find out how to prove that both π and e  

are irrational numbers and the properties of their combinations (sums, differences, products). 

2. Basic Concepts and Preparatory Knowledge 

This section describes the basic concepts, notations, and preparatory knowledge used throughout the 

work. 

2.1 Rational and irrational criteria 

If 𝛼 =
𝑎

𝑏
, where 𝑎, 𝑏 ∈ 𝑍  are integers, then the number 𝛼 ∈ 𝑅  is called rational. Otherwise, the 

number is irrational. Irrational numbers can be classified as algebraic and transcendental numbers. 𝛼 

is algebraic if it is a root of an irreducible polynomial 𝑓(𝑥) ∈ 𝑍[𝑥] with number deg(𝑓)＞1 and vice 

versa [3]. 

Lemma 2.1 (Rational Criterion) If a real number 𝛼 ∈ 𝑄  is a rational number, then there exists a 

constant 𝑐 = 𝑐(𝛼) such that 
𝑐

𝑞
≤ |𝛼 −

𝑝

𝑞
| (2.1) 

holds for any rational fraction 
𝑝

𝑞
≠ 𝛼. Specifically, if 𝛼 =

𝛼

𝐵
 then 𝑐 ≥

1

𝐵
. 

This is a mathematical expression about the difficulty of any rational number 𝛼 ∈ 𝑄 being effectively 

approximated by other rational numbers [4-6]. On the other hand, the irrational number 𝛼 ∈ 𝑅 − 𝑄 

can be effectively approximated by rational numbers. If the inequality |𝛼 −
𝑝

𝑞
| <

𝑐

𝑞
 complementary to 

Equation 2.1 holds approximately for an infinite number of rational numbers 
𝑝

𝑞
, then it is sufficiently 

clear that the real number 𝛼 ∈ 𝑅 is irrational. 

Lemma 2.2 (Irrational Criterion) Let 𝜓(𝑥) = 𝑜(
1

𝑥)
 be a monotonically decreasing function, such that 

𝛼 ∈ 𝑄 is a real number, if 

0 < |𝛼 −
𝑝

𝑞
| < 𝜓(𝑞) (2.2) 

holds for infinitely many rational fractions 𝑝 𝑞⁄ ∈ 𝑄, then 𝛼 is irrational [4-6]. 

Proof: by Lemma 2.1 and assumptions, it follows that 

𝑐

𝑞
≤ |𝛼 −

𝑝

𝑞
| < 𝜓(𝑞) = 𝑜(

1

𝑞
) (2.3) 
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However, this is a contradiction because 
𝑐

𝑞
≠ 𝑜(

1

𝑞
) A more precise theorem for testing that any real 

number is irrational is discussed below. 

Theorem 2.1 Suppose aR is an irrational number, then there exists an infinite sequence of rational 

numbers 
𝑝𝑛

𝑞 𝑛
 satisfying 

0 < |𝛼 −
𝑝𝑛

𝑞𝑛
| <

1

𝑞𝑛
2
 (2.4) 

holds for any integer 𝑛 ∈ 𝑁 [4-6]. 

For a continuous fraction 𝑎𝑖 ≥ 𝑎 > 1 of the larger term 𝛼 = [𝑎0, 𝑎1, 𝑎2, ⋯ ], where 𝑎 is a constant, 

there is a slightly better inequality. 

Theorem 2.2 Let [𝑎0, 𝑎1, 𝑎2, . . . ] be a sequence of continuous fractions {
𝑝𝑛

𝑞𝑛 : 𝑛≥1
} of real numbers that 

are convergent, then there is. 

0 < |𝛼 −
𝑝𝑛

𝑞𝑛
| <

1

𝑎𝑛𝑞𝑛
2
 (2.5) 

holds for any integer 𝑛 ∈ 𝑁 [4-6]. 

This is a standard mathematical formulation in the literature [4-6], and related proofs appear in similar 

references [7-9]. A theorem that provides a more general application to almost all real inequalities is 

as follows. 

Theorem 2.3 Let 𝜓 be a monotonically decreasing real function, 𝛼 ∈ 𝑅. If there exists an infinite 

sequence of rational approximations 
𝑝𝑛

𝑞𝑛
 such that 

𝑝𝑛

𝑞𝑛
≠ 𝛼 and. 

0 < |𝛼 −
𝑝𝑛

𝑞𝑛
| <

𝜓(𝑞𝑛)

𝑞𝑛

 (2.6) 

and ∑ 𝜓(𝑞) < ∞𝑞  then the real numbers 𝛼 are approximable to 𝜓. 

2.2 A key helper function 

Construct the auxiliary function. 

𝑓(𝑥) =
𝑥𝑛(1−𝑥)𝑛

𝑛!
, and prove that this function satisfies the following three properties. 

Property I 𝑓(𝑥) is a polynomial of form ∑
𝑐𝑖

𝑖!

2𝑛
𝑖=𝑛 𝑥𝑖 and satisfies that the coefficients 𝑐𝑖 are all integers. 

Property II When 0 < 𝑥 < 1, 0 < 𝑓(𝑥) <
1

𝑛!
. 

Property III For all integers 𝑚 ≥ 0, the 𝑚 -th order derivatives of 𝑓(𝑥) must have integer values at 0 

and 1, i.e., 𝑓(𝑚)(0) and 𝑓(𝑚)(1) are also integers. 

Property I and Property II are obviously valid, and Property III is proved below. 𝑓(𝑥) is a sum of 𝑛 +
1 terms from the 𝑛th power of 𝑥 to the 2𝑛th power of 𝑥, according to Property I. Therefore, when 

𝑚 < 𝑛, 𝑓(𝑚)(0) is 0, which is of course an integer, and when 𝑚 > 2𝑛, 𝑓(𝑚)(𝑥) is constantly 0, 

which is 𝑓(𝑚)(0), of course, also an integer. 

And when 𝑛 ≤ 𝑚 ≤ 2𝑛, the 𝑚th order derivative of 𝑓(𝑥) according to the polynomial of property I 

yields 𝑓(𝑚)(0) =
𝑐𝑚⋅𝑚!

𝑛!
, and since 𝑐𝑚  is an integer and 𝑚 ≥ 𝑛 , this number must be an integer. 

Therefore 𝑓(𝑚)(0) must be an integer. Also, notice that this function has a very obvious symmetry, 

i.e. 

𝑓(𝑥) = 𝑓(1 − 𝑥) (2.7) 

Taking the derivative of order 𝑚 for both sides of this equation at the same time, and after that we 

get. 

𝑓(𝑚)(𝑥) = (−1)𝑚𝑓(𝑚)(1 − 𝑥) (2.8) 
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from which we have 𝑓(𝑚)(0) = (−1)𝑚𝑓(𝑚)(1), so since 𝑓(𝑚)(0) is an integer, then 𝑓(𝑚)(1) is also 

an integer and Property III holds. 

2.3 𝒘 -transform 

Like the classical Laplace transform, Fourier transform, Merlin transform, finite Fourier transforms, 

𝑧 -transform and other related functional transformation methods transform in the time domain to 

solve certain problems more only. Similarly, the 𝑤 -transform transforms some apparently intractable 

problems in the real domain 𝑅 into simpler decision problems in the binary domain 𝐹2 = {0,1} [10]. 

Definition 2.1 Let 𝛼 ∈ 𝑅, 𝑤 -transform be a mapping W:R →  F2 = {0，1}, defined as follows. 

𝑤(𝛼) = 𝑙𝑖𝑚
𝑥→∞

1

2𝑥
∑ 𝑒𝑖𝛼𝑛

−𝑥≤𝑛≤𝑥

 (2.9) 

After normalizing the 𝑤 -transform, its value can be regressed to π. It can also be modified as needed. 

𝑤 -transform can be a point mapping or an equivalent class of mappings, which is irreversible and 

often does not require inversion in decision class problem applications. 

Lemma 2.3 For any real number 𝛼 ∈ 𝑅, the 𝑤 -transform satisfies the following conditions. 

𝑤(2𝜋𝑚𝑎) = {
1 When and only when 𝛼 ∈ 𝑄
0 When and only when 𝛼 ∉ 𝑄

 (2.10) 

for 𝑚 ∈ 𝑍. 

Proof: Given any rational number 𝛼 ∈ 𝑄 , there exists an integer 𝑚 ∈ 𝑍  satisfying 𝛼𝑚 ∈ 𝑍 , by 

definition.  

𝑤(2𝜋𝑚𝛼) = 𝑙𝑖𝑚
𝑥→∞

1

2𝑥
∑ 𝑒𝑖2𝜋𝑚𝛼𝑛

−𝑥≤𝑛≤𝑥

= 𝑙𝑖𝑚
𝑥→∞

1

2𝑥
∑ 1

−𝑥≤𝑛≤𝑥

= 1 (2.11) 

The above proves that for an integer 𝑚 , the sequence: {2𝜋𝑚𝛼 : 𝑛 ∈ 𝑍}  is inhomogeneously 

distributed. And for any irrational number 𝛼 ∉ 𝑄 and integer 𝑚 ≠ 0, the sequence: {2𝜋𝑚𝛼 : 𝑛 ∈ 𝑍} 

is uniformly distributed, the proof is the same as Weil's criterion, see Theorem 2.1 of [11]. 

It can be seen that the function 𝑤 maps the rational number 𝑄 to 1 and the irrational number I=Q −
𝑅 to 0. The 𝑤 -transformation derives an equivalence relation on the set of real numbers R=Q − 𝐼. 

A pair of real numbers 𝑎 and 𝑏 is equivalent to 𝑎 ~ 𝑏 when and only when. 

𝑤(2𝜋𝑎) = 𝑤(2𝜋𝑏) (2.12) 

A pair of real numbers 𝑎 and 𝑏 is not equivalent to 𝑎 ≠ 𝑏 when and only when. 

𝑤(2𝜋𝑎) ≠ 𝑤(2𝜋𝑏) (2.13) 

The next theorem takes the properties of the 𝑤 -transformation one step further. 

Lemma 2.4 For any real number 𝛼 ∈ 𝑅, there exists a map 𝑇: 𝑅 → 𝐹3 = {−1,0,1} which satisfies the 

following conditions. 









=

algebraicnot but  rational is  only when and when1-

number algebraic anbut number  rationala  is  only when and when0

number rationala  is  only when and when1

)2(







mT  (2.14) 

Lemma 2.5 For any real number 𝑡 ≠ 𝑘𝜋, 𝑘 ∈ 𝑍, and a sufficiently large integer 𝑥 ≥ 1, the rank-sum.  

(1) 

∑ 𝑒𝑖2𝑡𝑛

−𝑥≤𝑛≤𝑥

=
𝑠𝑖𝑛( (2𝑥 + 1)𝑡)

𝑠𝑖𝑛( 𝑡)  (2.15) 

(2) 

| ∑ 𝑒𝑖2𝑡𝑛

−𝑥≤𝑛≤𝑥

| ≤
1

|𝑠𝑖𝑛( 𝑡)|
 (2.16) 
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Proof: Expand this exponential summation into two terms. 

∑ 𝑒𝑖2𝑡𝑛

−𝑥≤𝑛≤𝑥

= 𝑒−𝑖2𝑡 ∑ 𝑒−𝑖2𝑡𝑛

0≤𝑛≤𝑥−1

+ ∑ 𝑒𝑖2𝑡𝑛

0≤𝑛≤𝑥

 (2.17) 

Finally, the limit value of the equation can be determined using the geometric series. 

3. Proof of key conclusions 

3.1 Proof that 𝒆 is an irrational number 

We start with the simplest problem, proving that 𝑒 is irrational [18-20]. If the function 𝑒𝑥 is subjected 

to a Taylor series expansion at the point 𝑥 = 0, and then after substituting 𝑥 = 1 into the resulting 

infinite term series expansion, the following well-known formula is obtained, i.e. 

𝑒 = ∑
1

𝑖!

∞

𝑖=0

=
1

0!
+

1

1!
+

1

2!
+. . . . . . .. (3.1) 

Without resorting to Taylor series expansions, one can also use the following approach to give a less 

rigorous proof of the above equation from the definition of 𝑒. 

We know that by definition, 𝑒 = 𝑙𝑖𝑚
𝑛→∞

(1 +
1

𝑛
)𝑛, and let us first look at the expression (1 +

1

𝑛
)𝑛 for the 

limit being sought, expanding this power expression according to the binomial decomposition as 

follows. 

(1 +
1

𝑛
)𝑛 = 𝐶𝑛

0 + 𝐶𝑛
1 ⋅

1

𝑛
+ 𝐶𝑛

2 ⋅
1

𝑛2
+ 𝐶𝑛

3 ⋅
1

𝑛3
+ ⋯ …. 

+𝐶𝑛
𝑛 ⋅

1

𝑛𝑛
= 1 +

𝑛

1! ⋅ 𝑛
+

𝑛(𝑛 − 1)

2! ⋅ 𝑛2
+

𝑛(𝑛 − 1)(𝑛 − 2)

3! ⋅ 𝑛3
+ ⋯ …. 

+
𝑛(𝑛 − 1)(𝑛 − 2). . . . . . (𝑛 − 𝑖 + 1)

𝑖! ⋅ 𝑛𝑖
+. . . . . . .

𝑛(𝑛 − 1)(𝑛 − 2). . . . . .2 ⋅ 1

𝑛! ⋅ 𝑛𝑛
 

(3.2) 

We observe the 𝑖 -th term of which (note that 𝑖 here is independent of n) and set the 𝑖 -th term to 𝑎𝑖 , 

with 

1

𝑖!
⋅ (

𝑛 − 𝑖 + 1

𝑛
)𝑖 < 𝑎𝑖 =

𝑛(𝑛 − 1)(𝑛 − 2). . . . . . (𝑛 − 𝑖 + 1)

𝑖! ⋅ 𝑛𝑖
<

1

𝑖!
 (3.3) 

It is obvious that both sides of Equation 3.3 converge to 
1

𝑖!
 as 𝑛 tends to +∞, so apply the pinch-force 

theorem for the limit. 

𝑙𝑖𝑚
𝑖→∞

𝑎𝑖 =
1

𝑖!
 (3.4) 

Since (1 +
1

𝑛
)𝑛 expands to an n-term sum, when 𝑛 tends to +∞, it obviously becomes an infinite term 

sum. For 𝑛 tending to +∞, each obtained 𝑎𝑖 corresponds to a specific, finite 𝑖. As a result of the above 

derivation, any specific 𝑎𝑖 is equal to 
1

𝑖!
 and the resulting infinite sum of terms must be, 

𝑒 = 1 +
1

1!
+

1

2!
+. . . . . . .. (3.5) 

Thus. 

𝑒 = 𝑙𝑖𝑚
𝑛→∞

(1 +
1

𝑛
)𝑛 = 1 +

1

1!
+

1

2!
+. . . . . . . . = ∑

1

𝑖!

∞

𝑖=0

 (3.6) 

After proving the above conclusion, the process, and method of proving that 𝑒 is an irrational number 

is simpler. We apply the converse method to prove that 𝑒 is indeed an irrational number. 

Assuming that 𝑒 is a rational number, we may set 𝑒 =
𝑎

𝑏
, where 𝑎 and 𝑏 are positive integers, and we 

then take a positive integer 𝑛 and multiply both sides of this equation by 𝑏 ⋅ 𝑛! to get. 
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𝑏 ⋅ 𝑛! ⋅ 𝑒 = 𝑎 ⋅ 𝑛! (3.7) 

Obviously, the right side of equation 3.7 is an integer, while its left side is. 

𝑏 ⋅ 𝑛! ⋅ 𝑒 = 𝑏 ⋅ 𝑛! ⋅ (1 +
1

1!
+

1

2!
+

1

3!
… … . . ) 

= 𝑏 ⋅ 𝑛! ⋅ (1 +
1

1!
+

1

2!
+

1

3!
… … . . +

1

𝑛!
) + 𝑏 ⋅ (

1

𝑛 + 1
+

1

(𝑛 + 1)(𝑛 + 2)
 

+
1

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)
+. . . . . . . ) 

(3.8) 

The first term of this equation is clearly an integer, yet the second term is clearly faulty so that the 

second term is equal to 𝑀. We have. 

0 < 𝑀 = 𝑏 ⋅ (
1

𝑛 + 1
+

1

(𝑛 + 1)(𝑛 + 2)
+

1

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)
+ ⋯ … . ) 

< 𝑏 ⋅ (
1

𝑛 + 1
+

1

(𝑛 + 1)2
+

1

(𝑛 + 1)3
+. . . . . . . ) =

𝑏

𝑛
 

(3.9) 

Since it is n we arbitrarily choose a positive integer, as long as we get the value of 𝑛 large enough so 

that 𝑛 > 𝑏, we get 0 < 𝑀 < 1, thus making it impossible for 𝑀 to be an integer. Thus the left side of 

equation 3.7 is not an integer, while its right side must be an integer, a contradiction. 

Thus 𝑒 cannot be a rational number, and the proof is over. 

3.2 Proof that 𝒆𝒌 (𝒌 is a positive integer) is irrational 

If we are familiar with the Taylor series expansion of 𝑒𝑥, we can use the previous method to prove 

that 𝑒 is irrational in a similar way to prove that 𝑒2 is also irrational. First assume that 𝑒2 =
𝑎

𝑏
, and 

then get 𝑏 ⋅ 𝑒 = 𝑎 ⋅ 𝑒−1, while using the Taylor series expansion of 𝑒 and 𝑒−1, and find that one of 

the two sides of the equation is a little larger than some integer and the other side is a little smaller 

than some integer, in which case the two numbers cannot be equal, thus deriving a contradiction. No 

further details will be elaborated here [21-24]. 

Also, thinking a bit more, we can see that studying whether 𝑒𝑘 is an irrational number is a relatively 

meaningful problem. If for any positive integer 𝑘, there is for irrational 𝑒𝑘, so that any rational power 

we obtain is easily irrational, this is because: for any positive rational number 
𝑘

𝑙
, both 𝑘 and 𝑙 are 

obviously positive integers and 𝑒𝑘 = (𝑒
𝑘

𝑙 )𝑙, but if 𝑒𝑘 is irrational, 𝑒
𝑘

𝑙  must also be irrational, because 

an integer power of a rational number must be rational, not irrational. 

As for the negative rational powers of 𝑒, it must be the reciprocal of the positive rational powers, 

because once all the positive rational powers of 𝑒 are irrational, it is equivalent to proving that its 

negative rational powers are also irrational. 

We assume that there exists some positive integer 𝑘. To make 𝑒𝑘 a rational number, we can set 𝑒𝑘 =
𝑎

𝑏
, and 𝑎 and 𝑏 are positive integers. Then we use the auxiliary function 𝑓(𝑥) from Section 2.2 to 

construct a new function satisfying 𝐹(𝑥). 

𝐹(𝑥) = 𝑘2𝑛𝑓(𝑥) − 𝑘2𝑛−1𝑓(1)(𝑥) + 𝑘2𝑛−2𝑓(2)(𝑥) + ⋯ … 

+(−1)𝑖𝑘2𝑛−𝑖𝑓(𝑖)(𝑥)+. . . . . . +𝑓(2𝑛)(𝑥)+. . . . .. 
(3.10) 

Since 𝑓(𝑥) is a sub-polynomial, the function 𝐹(𝑥) is 0 for all terms after the term 𝑓(2𝑛)(𝑥), but it 

does not make a fundamental difference to continue adding up and writing it in the form of an infinite 

sum of terms. The function 𝐹(𝑥) so constructed has a feature that the form of the derivative function 

is somewhat similar to the original function, so it is easy to calculate to obtain. 

𝐹′(𝑥) + 𝑘𝐹(𝑥) = 𝑘2𝑛+1𝑓(𝑥) (3.11) 

Based on equation 3.11 the differential equation can be constructed as follows. 



International Journal of Science Vol.8 No.5 2021                                                             ISSN: 1813-4890 

 

57 

 

𝑑

𝑑𝑥
[𝑒𝑘𝑥 ⋅ 𝐹(𝑥)] = 𝑒𝑘𝑥 ⋅ 𝐹′(𝑥) + 𝑒𝑘𝑥 ⋅ 𝑘 ⋅ 𝐹(𝑥) = 𝑒𝑘𝑥 ⋅ 𝑘2𝑛+1 ⋅ 𝑓(𝑥) (3.12) 

Thus, we obtain the following integral equation. 

𝐿 = 𝑏 ⋅ ∫ 𝑒𝑘𝑥 ⋅ 𝑘2𝑛+1 ⋅ 𝑓(𝑥)
1

0

𝑑𝑥 = 𝑏 ⋅ 𝑒𝑘𝑥 ⋅ 𝐹(𝑥)| 0
1 

= 𝑏 ⋅ 𝑒𝑘 ⋅ 𝐹(1) − 𝑏 ⋅ 𝐹(0) = 𝑎 ⋅ 𝐹(1) − 𝑏 ⋅ 𝐹(0) 

(3.13) 

According to Property III, 𝐹(1) and 𝐹(0) are integers, and 𝑎 and 𝑏 are also integers, thus 𝐿 should 

be an integer. But on the other hand, according to property II, we have. 

0 < 𝐿 = 𝑏 ⋅ ∫ 𝑒𝑘𝑥 ⋅ 𝑘2𝑛+1 ⋅ 𝑓(𝑥)
1

0

𝑑𝑥 < 𝑏 ⋅ 𝑒𝑘 ⋅ 𝑘2𝑛+1 ⋅
1

𝑛!
=

𝑎 ⋅ 𝑘2𝑛+1

𝑛!
 (3.14) 

At large values of 𝑛, 𝑛! grows much faster than 𝑘2𝑛+1, so it is necessary to choose 𝑛 large enough so 

that 𝑛! > 𝑎 ⋅ 𝑘2𝑛+1 and then get 0 < 𝐿 < 1, which contradicts that 𝐿 is an integer. Thus 𝑒𝑘 cannot be 

a rational number and the proof is over. 

From the above process, we get the following conclusion: the natural exponent 𝑒 itself is irrational, 

while any rational power of 𝑒 (except 0) is also irrational. 

3.3 Proof that π is an irrational number 

Proving that π is irrational is a little more complicated than proving that e is irrational. Assuming that 

π is rational, we can set 𝜋 =
𝑎

𝑏
, where 𝑎 and 𝑏 are positive integers, and we define the analogous 

function 𝑓(𝑥) as the following function. 

𝑔(𝑥) =
𝑥𝑛(𝑎 − 𝑏𝑥)𝑛

𝑛!
 (3.15) 

and. 

𝐺(𝑥) = 𝑔(𝑥) − 𝑔(2)(𝑥) + 𝑔(4)(𝑥)+. . . . . . +(−1)𝑛𝑔(2𝑛)(𝑥) (3.16) 

We can easily find that the polynomial coefficients of 𝑛! 𝑔(𝑥) are all integers and the lowest power 

of the polynomial is greater than 𝑛. On the other hand, according to the proof of Eq. 2.8, it can be 

deduced that the values of the function 𝑔(𝑥) and its derivatives at 0 and 
𝑎

𝑏
 are integers, so 𝐺(0) and 

𝐺(
𝑎

𝑏
) are integers. And the constructed function 𝐺(𝑥) is related to the function 𝑔(𝑥) by the following 

equation. 

𝐺′′(𝑥) + 𝐺(𝑥) = 𝑔(𝑥) (3.17) 

By the elementary integral operation, we can conclude that, 
𝑑

𝑑𝑥
[𝐺′(𝑥) 𝑠𝑖𝑛 𝑥 − 𝐺(𝑥) 𝑐𝑜𝑠 𝑥] = 𝐺′′(𝑥) 𝑠𝑖𝑛 𝑥 + 𝐺(𝑥) 𝑠𝑖𝑛 𝑥 = 𝑔(𝑥) 𝑠𝑖𝑛 𝑥 (3.18) 

Further, we can obtain the following integral equation. 

𝐿 = ∫ 𝑔(𝑥) 𝑠𝑖𝑛 𝑥
𝜋

0

𝑑𝑥 = 𝐺′(𝑥) 𝑠𝑖𝑛 𝑥 − 𝐺(𝑥) 𝑐𝑜𝑠 𝑥 | 0
𝜋 = 𝐺(𝜋) + 𝐺(0) (3.19) 

Since 𝐺(0) and 𝐺(
𝑎

𝑏
) are both integers, but for 0 < 𝑥 < 𝜋, we have. 

0 < 𝑔(𝑥) 𝑠𝑖𝑛 𝑥 <
𝜋𝑛𝑎𝑛

𝑛!
 (3.20) 

Therefore, we can choose 𝑛  large enough so that 𝑛! > 𝜋𝑛𝑎𝑛 , thus making 0 < 𝐿 < 1 , which 

contradicts that 𝐿 is an integer. Thus π cannot be a rational number and the proof is over. 

3.4 Proof that 𝝅𝟐 is an irrational number 

The properties of π are not as good as 𝑒. For the function ex, its derivative is still itself, while π is not, 

so proving that it is π irrational is a bit more troublesome compared to 𝑒. The following is an example 

of 𝑘 = 2 with the help of function 𝑓(𝑥) and its three properties, to prove that π is irrational. 
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Assume that 𝜋2 is a rational number, you can set 𝜋2 =
𝑎

𝑏
, where 𝑎 and 𝑏 are positive integers, after 

using the function 𝑓(𝑥) to construct a new function 𝑃(𝑥) as follows. 

𝑃(𝑥) = 𝑏𝑛[𝜋2𝑛𝑓(𝑥) − 𝜋2𝑛−2𝑓(2)(𝑥)+. . . . . . +(−1)𝑖𝜋2𝑛−2𝑖𝑓(2𝑖)(𝑥)+. . . . . ] (3.21) 

𝑃(𝑥) is summed according to the even-order derivatives of 𝑓(𝑥), whose second-order derivatives 

must satisfy the following relation. 

𝑃′′(𝑥) + 𝜋2𝑃(𝑥) = 𝑏𝑛𝜋2𝑛+2𝑓(𝑥) (3.22) 

Unlike the case of proving that 𝑒𝑘 is irrational, here the second-order derivatives are involved and 

Leibniz's law cannot be used directly, but we can use the derivative property of trigonometric 

functions to construct the following differential equation. 

𝑑

𝑑𝑥
[𝑃′(𝑥) 𝑠𝑖𝑛 𝜋 𝑥 − 𝜋𝑃(𝑥) 𝑐𝑜𝑠 𝜋 𝑥] 

= 𝑃′′(𝑥) 𝑠𝑖𝑛 𝜋 𝑥 + 𝜋 𝑐𝑜𝑠 𝜋 𝑥 ⋅ 𝑃′(𝑥) − 𝜋 𝑐𝑜𝑠 𝜋 𝑥 ⋅ 𝑃′(𝑥) + 𝜋2 𝑠𝑖𝑛 𝜋 𝑥 ⋅ 𝑃(𝑥) 

= 𝑠𝑖𝑛 𝜋 𝑥 ⋅ [𝑃′′(𝑥) + 𝜋2𝑃(𝑥)] = 𝑏𝑛𝜋2𝑛+2 𝑠𝑖𝑛 𝜋 𝑥 ⋅ 𝑓(𝑥) 

(3.23) 

Thus, on the one hand. 

𝐿 =
1

𝜋
∫ 𝑏𝑛𝜋2𝑛+2 𝑠𝑖𝑛 𝜋 𝑥 ⋅ 𝑓(𝑥)

1

0

𝑑𝑥 =
1

𝜋
[𝑃′(𝑥) 𝑠𝑖𝑛 𝜋 𝑥 − 𝜋𝑃(𝑥) 𝑐𝑜𝑠 𝜋 𝑥]| 0

1 

= 𝑃(1) + 𝑃(0) 

(3.24) 

Since 𝑏𝜋2 = 𝑎 is an integer, according to Property III of the function 𝑓(𝑥), the value of any order 

derivative of 𝑓(𝑥) at 0 and 1 is an integer, so both 𝑃(0) and 𝑃(1) are integers and 𝐿 should be an 

integer. 

But on the other hand, according to Property II, we have. 

0 < 𝐿 =
1

𝜋
∫ 𝑏𝑛𝜋2𝑛+2 𝑠𝑖𝑛 𝜋 𝑥 ⋅ 𝑓(𝑥)

1

0

𝑑𝑥 = 𝜋 ⋅ ∫ (𝑏𝜋2)𝑛 𝑠𝑖𝑛 𝜋 𝑥 ⋅ 𝑓(𝑥)
1

0

𝑑𝑥 

= 𝜋 ⋅ ∫ 𝑎𝑛 𝑠𝑖𝑛 𝜋 𝑥 ⋅ 𝑓(𝑥)
1

0

𝑑𝑥 <
𝜋𝑛𝑎𝑛

𝑛!
 

(3.25) 

In the case that 𝑛 takes a large value, so that 𝑛! > 𝜋𝑛𝑎𝑛 and thus 0 < 𝐿 < 1, which contradicts that 

𝐿 is an integer. Thus 𝜋2 cannot be a rational number and the proof is over. 

Since the derivative of 𝜋𝑥 is not itself, we cannot uniformly construct a differential equation similar 

to 𝑒. To prove that 𝜋𝑘 is irrational, we need to personalize the construction of the function 𝑃𝑘(𝑥). 

Therefore, this method cannot uniformly determine whether 𝜋𝑘 is irrational or not. 

3.5 Proof that the sum 𝒆 + 𝝅 and the product 𝒆 ⋅ 𝝅 are irrational numbers 

In fact, 𝑒 and π are not only irrational numbers but also transcendental numbers. Of course, proving 

that they are transcendental numbers is much more complicated than irrational numbers; after all, 

proving that a number is irrational only requires proving that it is not a root of any one-time integer 

coefficient equation, but proving that a number is transcendental requires proving that it is not a root 

of any (no matter how many) integer coefficient equation [25-30]. Also, although we have proved 

that 𝑒 and π are transcendental numbers, we do not know whether the combinations like 𝑒 ± 𝜋 and 

𝑒 ⋅ 𝜋 and 𝑒/𝜋 are irrational numbers. 

The following counterfactual can be used to prove that there is at most one rational number of these 

four numbers. 

(1). If 𝑒 + 𝜋 , 𝑒 ⋅ 𝜋  are rational numbers, then 𝑒  and π are roots of the equation with rational 

coefficients. 

𝑥2 − (𝑒 + 𝜋)𝑥 + 𝑒𝜋 = 0 (3.26) 

This contradicts the fact that both 𝑒 and π are transcendental numbers. 
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(2). If 𝑒 + 𝜋 and 𝑒/𝜋 are both rational numbers, then. 

𝜋 = (𝑒 + 𝜋)/(1 +
𝑒

𝜋
) is a rational number, a contradiction. 

Therefore, 𝑒 + 𝜋, and 𝑒/𝜋 cannot be rational numbers at the same time. 

(3). If both 𝑒 + 𝜋 and 𝑒 − 𝜋 are rational numbers, then. 

𝑒 =
1

2
[(𝑒 + 𝜋) + (𝑒 − 𝜋)] 

is a rational 

number,and 
𝜋 =

1

2
[(𝑒 + 𝜋) − (𝑒 − 𝜋)] 

is a rational number, 

contradictory. 

Therefore, 𝑒 + 𝜋 and 𝑒 − 𝜋 cannot be rational numbers at the same time. 

(4). If 𝑒 ⋅ 𝜋 and 𝑒/𝜋 are both rational numbers, then. 

𝜋2 = (𝑒 ⋅ 𝜋)/(𝑒/𝜋)  is a rational number and 𝑒2 = (𝑒 ⋅ 𝜋) ⋅ (𝑒/𝜋)  is a rational number, a 

contradiction. Therefore, 𝑒 ⋅ 𝜋 and 𝑒/𝜋 cannot be rational numbers at the same time. 

3.5.1 Sums and products of algebraic and non-algebraic numbers 

The algebraic closure of rational numbers consists of all solutions of rational polynomial equations, 

and the subset of real numbers can be expressed as 

�̄� = {𝛼 ∈ 𝑅: 𝑓(𝛼) = 0 and 𝑓(𝑥) ∈ 𝑄[𝑥]} (3.27) 

Definition 3.1 An irrational number  is called an algebraic irrational number when and only when 

there exists a rational polynomial 𝑓(𝑥) ∈ 𝑄[𝑥], i.e., 𝑓(𝛼) = 0. Otherwise, it is called a non-algebraic 

irrational number or transcendental number. 

Definition 3.2 A subset of algebraic irrational numbers is defined as 

𝐴 = {𝛼 ∈ 𝑅: 𝛼 is an irrational number and 𝑓(𝛼) = 0} (3.28) 

For a rational polynomial 𝑓(𝑥) ∈ 𝑄[𝑥], a subset of A  is a proper subset of the set of algebraic 

integers, which is 𝐴 ⊂ 𝑄. 

Definition 3.3 A subset of a non-algebraic irrational number is defined as  

𝑇 = {𝛼 ∈ 𝑅: 𝛼 is an irrational number and 𝑓(𝛼) ≠ 0} (3.29) 

For any rational polynomial 𝑓(𝑥) ∈ 𝑄[𝑥] 

Theorem 3.1 The subsets A and T have the following properties. 

A subset A of algebraic irrational numbers is a pseudoring without rational number Q. A subset T of 

non-algebraic irrational numbers is a pseudoring without algebraic rational numbers 𝑄. 

Proof: Take a pair of non-algebraic irrational numbers 𝛼, 𝛽 ∈ 𝑇 such that 𝛼𝛽 ∉ 𝑄. Then, by Lemma 

3.1, the sum 𝛼 + 𝛽 ∉ 𝑇 and the product 𝛼𝛽 ∈ 𝑇 are non-algebraic irrational numbers. This condition 

𝛼𝛽 ∉ 𝑄 implies that the subset T does not contain the algebraic rational numbers 𝑄. 

A new subset of numbers is defined in [12], which is a ring without a unit. This subset is a proper 

subset of the union of algebraic irrational numbers and non-algebraic irrational numbers. 

S={periods} ⊂ 𝐴 ∪ 𝑇 (3.30) 

It is easy to prove that the set S  is a countable set. 

𝛼, 𝛽 ∈ 𝑅 , and depending on the properties of 𝛼  and 𝛽 , the summation 𝛼 + 𝛽  may be rational, 

irrational, or transcendental [31-35]. This simple conclusion will be used in the following. 

Lemma 3.1 Suppose 𝛼 ∈ 𝑅 is a transcendental number, and 𝛽 ∈ 𝑅 is also a real number, then its sum 

𝛼 + 𝛽 ∈ 𝑅 is a transcendental number. 

Proof: The real numbers 𝛼 + 𝛽 and 1/𝛼 are the unique roots of the following polynomial. 

𝑓(𝑥) = (𝑥 − (𝛼 + 𝛽)) (𝑥 −
1

𝛼
) = 𝑥2 − (𝛼 + 𝛽 +

1

𝛼
) 𝑥 + 1 +

𝛽

𝛼
 

=
1

𝛼
(𝛼𝑥2 − (𝛼2 + 𝛼𝛽 + 1)𝑥 + 𝛼 + 𝛽) 

(3.31) 
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Since 𝑓(𝑥) ∈ 𝑍[𝛼, 𝛽][𝑥] is a polynomial with transcendental coefficients, it is evident that 𝛼 + 𝛽 and 

1/𝛼 are not algebraic irrational numbers. Therefore, they are both transcendental numbers. 

3.5.2 Linear independence of rational number solutions 

Given a set of irrational numbers 𝛼1, 𝛼2, ⋯ , 𝛼𝑑 ∈ 𝑅 , the existence of a rational solution 

𝑐1, 𝑐2, ⋯ , 𝑐𝑑 ∈ 𝑅 to the linear equation is described as, 

𝑐1𝛼1 + 𝑐2𝛼2+. . . 𝑐𝑑𝛼𝑑 = 0 (3.32) 

This is an important problem in Diophantine analysis, and a discussion involving the general form of 

the linear system of equations can be found in the literature [36-39], where the simplest two- or three-

parameter cases can be solved given sufficient information about the parameters. 

Theorem 3.2 Assume that 𝛼 ≠ 𝑟𝜋, 𝑟 ∈ 𝑄 is an irrational number. Then, the following numbers are 

linearly independent in the range of rational numbers. 

(1). 1 𝛼 𝜋;     (2). 1 𝛼−1 𝜋; 

Proof: (1). Assuming that these numbers are linearly related in the range of rational numbers 𝑄, 

consider the equation 

1 ⋅ 𝑎 + 𝛼 ⋅ 𝑏 + 𝜋 ⋅ 𝑐 = 0 (3.33) 

where is (𝑎, 𝑏, 𝑐) ≠ (0,0,0) a rational number solution satisfying Equation 3.33, multiplied by the 

global least common multiple, and rewritten in equivalent form as 

2𝜋𝐶 = −2(𝛼𝐵 + 𝐴) (3.34) 

where is the integer 𝐴, 𝐵, 𝐶 ∈ 𝑍. To prove that there does not exist any rational number solution to 

the equation, the two sides are 𝑤 -transformed to obtain 

𝑤(2𝜋𝐶) = 𝑤(−2(𝛼𝐵 + 𝐴)) (3.35) 

The left and right sides of equation 3.35 are estimated separately as follows. 

Using the characteristic relation 𝑒𝑖2𝜋𝐶 = 1, where 𝐶 is an integer, the 𝑤 -transformation on the left 

side of the equation results in 

𝑤(2𝜋𝐶) = 𝑙𝑖𝑚
𝑥→∞

1

2𝑥
∑ 𝑒𝑖2𝜋𝐶𝑛

−𝑥≤𝑛≤𝑥

= 𝑙𝑖𝑚
𝑥→∞

1

2𝑥
∑ 1

−𝑥≤𝑛≤𝑥

= 1 (3.36) 

For the irrational number 𝛼𝐵 + 𝐴 there is 𝑠𝑖𝑛( 𝛼𝐵 + 𝐴) ≠ 0. Using Lemma 2.5 to estimate the right-

hand side of Eq. 3.36 as 

𝑤(−2(𝛼𝐵 + 𝐴)) = 𝑙𝑖𝑚
𝑥→∞

1

2𝑥
∑ 𝑒−𝑖2(𝛼𝐵+𝐴)𝑛

−𝑥≤𝑛≤𝑥

≤ 𝑙𝑖𝑚
𝑥→∞

1

2𝑥

1

|𝑠𝑖𝑛( 𝛼𝐵 + 𝐴)|
= 0 (3.37) 

The estimates of the 𝑤 -transform in Eqs. 3.36 and 3.37 contradict Eq. 3.35 as 

1 = 𝑤(2𝜋𝐶) ≠ 𝑤(−2(𝛼𝐵 + 𝐴)) (3.38) 

Therefore, there can be no rational number solution (𝑎, 𝑏, 𝑐) ≠ (0,0,0) for equation 3.33, and the 

proof of (2) is similar. 

Theorem 3.3 Let 𝛼 ≠ 𝑟𝜋, an irrational number, then the following numbers are linearly independent 

in the range of rational numbers. 

(1). 1 𝛼 𝜋−1;     (2). 1 𝛼−1 𝜋−1 

Proof: (1). Assuming that these numbers are linearly related in the range of rational numbers 𝑄, 

consider the equation 

1 ⋅ 𝑎 + 𝛼 ⋅ 𝑏 + 𝜋−1 ⋅ 𝑐 = 0 (3.39) 

where (𝑎, 𝑏, 𝑐) ≠ (0,0,0) is a rational number solution satisfying Equation 3.39, transformed into the 

following equivalent form. 

2𝜋 =
−2𝑐

𝑎 + 𝛼 ⋅ 𝑏
 (3.40) 
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where 𝑎, 𝑏, 𝑐 ∈ 𝑄 is a rational number, and to prove that there does not exist any rational number 

solution to equation 3.39, the w-transformation of its two sides yields 

𝑤(2𝜋) = 𝑤(
−2𝑐

𝑎 + 𝛼 ⋅ 𝑏
) (3.41) 

The estimates for each of the left and right sides of equation 3.41 are as follows. 

Using the characteristic relation 𝑒𝑖2𝜋 = 1, the result of the 𝑤 -transformation of the left side of the 

equation is 

𝑤(2𝜋) = 𝑙𝑖𝑚
𝑥→∞

1

2𝑥
∑ 𝑒𝑖2𝜋𝑛

−𝑥≤𝑛≤𝑥

= 𝑙𝑖𝑚
𝑥→∞

1

2𝑥
∑ 1

−𝑥≤𝑛≤𝑥

= 1 (3.42) 

For an irrational number 𝛼 with 𝑠𝑖𝑛(
−2𝑐

𝑎+𝛼⋅𝑏
) ≠ 0, using Lemma 2.5 to estimate the right-hand side of 

Eq. 3.41 as 

𝑤(
−2𝑐

𝑎 + 𝛼 ⋅ 𝑏
) = 𝑙𝑖𝑚

𝑥→∞

1

2𝑥
∑ 𝑒𝑖2(

−2𝑐
𝑎+𝛼⋅𝑏

)𝑛

−𝑥≤𝑛≤𝑥

= 𝑙𝑖𝑚
𝑥→∞

1

2𝑥

1

|𝑠𝑖𝑛(
−𝑐

𝑎 + 𝛼 ⋅ 𝑏)|
=0 (3.43) 

The estimation results of the 𝑤 -transform in Eqs. 3.42 and 3.43 contradict Eq. 3.41 as 

1 = 𝑤(2𝜋) ≠ 𝑤(
−2𝑐

𝑎 + 𝛼 ⋅ 𝑏
) (3.44) 

Therefore, there can be no rational number solution (𝑎, 𝑏, 𝑐) ≠ (0,0,0) for equation 3.39, and the 

proof of (2) is similar to this. 

3.5.3 Proof that the sum 𝒆 + 𝝅 and the product 𝒆𝝅 are irrational numbers 

Based on the 𝑤 -transformation it can be argued that the number 𝑙𝑛 𝜋 is irrational. To confirm this, 

assume that it is a rational number 𝑙𝑛 𝜋 = 𝑟 ∈ 𝑄 and consider the equivalence equation  

2𝜋 = 2𝑒𝑟 (3.45) 

By the Hermite-Lindemann theorem, 𝑒𝑟 is transcendental, and the proof is given in Eqs. 3.10 to 3.14. 

Taking the 𝑤 -transformation for both sides of Eq. 3.45, we get 

𝑤(2𝜋) = 𝑤(2𝑒𝑟) (3.46) 

Using the characteristic relation 𝑒𝑖2𝜋 = 1, an estimate for the left-hand side of Eq. 3.46 yields  

𝑤(2𝜋) = 𝑙𝑖𝑚
𝑥→∞

1

2𝑥
∑ 𝑒𝑖2𝜋𝑛

−𝑥≤𝑛≤𝑥

= 𝑙𝑖𝑚
𝑥→∞

1

2𝑥
∑ 1

−𝑥≤𝑛≤𝑥

= 1 (3.47) 

For the irrational number 𝑒𝑟 with 𝑠𝑖𝑛( 𝑒𝑟) ≠ 0, using Lemma 2.5 to estimate the right-hand side of 

Eq. 3.46 gives 

𝑤(2𝑒𝑟) = 𝑙𝑖𝑚
𝑥→∞

1

2𝑥
∑ 𝑒𝑖2𝑒𝑟𝑛

−𝑥≤𝑛≤𝑥

≤ 𝑙𝑖𝑚
𝑥→∞

1

2𝑥

1

|𝑠𝑖𝑛( 𝑒𝑟)|
= 0 (3.48) 

The estimates of the 𝑤 -transform in Eqs. 3.47 and 3.48 contradict Eq. 3.46, specifically with 

1 = 𝑤(2𝜋) ≠ 𝑤(2𝑒𝑟) = 0 (3.49) 

Therefore, lnπ ∈ 𝑅 is not a rational number. 

A similar analysis applies to other numbers such as 𝑒𝑟, but additional work is needed to prove the 

irrationality of 𝑙𝑜𝑔2 𝜋 and 2𝜋. 

Lemma 3.2 The summation 𝑒 + 𝜋 and the product 𝑒𝜋 of 𝑒 and π are irrational numbers 

Proof: (1). It follows from Theorem 3.2 that the equation 1 ⋅ 𝑎 + 𝑒 ⋅ 𝑏 + 𝜋 ⋅ 𝑐 = 0 has no rational 

number solution (𝑎, 𝑏, 𝑐) = (0, 𝑏, 𝑐) ≠ (0,0,0). Therefore 𝑒 + 𝜋 = 𝑟0 has no solution 𝑟0 ∈ 𝑄. 

(2). From Theorem 3.3, we know that the equation 1 ⋅ 𝑎 + 𝑒 ⋅ 𝑏 + 𝜋−1 ⋅ 𝑐 = 0 has no rational number 

solution (𝑎, 𝑏, 𝑐) = (0, 𝑏, 𝑐) ≠ (0,0,0). Therefore 𝑒 = 𝑟1𝜋−1 has no rational solution 𝑟1 ∈ 𝑄. 

Lemma 3.3 Both 𝑒 + 𝜋 and 𝑒𝜋 are transcendental numbers (non-algebraic irrational numbers). 
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Proof: (1) The irrational numbers 𝑒 + 𝜋 and 𝑒𝜋 are the unique roots of the following polynomials. 

𝑓(𝑥) = (𝑥 − (𝑒 + 𝜋))(𝑥 − 𝑒−1𝜋) 

= 𝑥2 − (𝑒 + 𝜋 + 𝑒−1𝜋)𝑥 + 𝜋 + 𝑒−1𝜋2 

=
1

𝑒
(𝑒𝑥2 − (𝑒2 + 𝑒𝜋 + 𝜋)𝑥 + 𝑒𝜋 + 𝜋2) 

(3.50) 

Since 𝑓(𝑥) ∈ 𝑍[𝑒, 𝜋][𝑥] is a polynomial with transcendental coefficients, it follows that 𝑒 + 𝜋 and 

𝑒−1𝜋 are not algebraic irrational numbers. Therefore, they are transcendental numbers (roots of non-

algebraic polynomials). 

(2) The irrational numbers 𝑒−1 + 𝜋 and 𝑒𝜋 are the unique roots of the following polynomials. 

𝑔(𝑥) = (𝑥 − (𝑒−1 + 𝜋))(𝑥 − 𝑒𝜋) 

= 𝑥2 − (𝑒−1 + 𝜋 + 𝑒𝜋)𝑥 + 𝜋 + 𝑒−1𝜋2 

=
1

𝑒
(𝑒𝑥2 − (1 + 𝑒2𝜋 + 𝑒𝜋)𝑥 + 𝑒𝜋 + 𝜋2) 

(3.51) 

Since 𝑔(𝑥) ∈ 𝑍[𝑒, 𝜋][𝑥] is a polynomial with transcendental coefficients, it follows that 𝑒−1 + 𝜋 and 

𝑒𝜋 are not algebraic irrational numbers. Therefore, they are transcendental numbers (roots of non-

algebraic polynomials). 
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