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Abstract 
This study compares the performance of various aspects of the recently proposed 
algorithm for the detection of steady-state visual evoked potentials (SSVEPs): TRCA and 
SSCOR, with the addition of filter banks, and further develops an integration method to 
integrate filters corresponding to multiple stimulus frequencies. In this study, SSCOR 
detection algorithm is compared with TRCA detection algorithm using Benchmark 
dataset. The performance was evaluated in terms of classification accuracy and 
information transfer rate (ITR). The results show that the overall performance metrics 
of the SSCOR algorithm are better than those of the TRCA method. 
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1. Introduction 

Brain-computer interface (BCI) provides a new communication channel between the brain and 
external devices and has received increasing attention in recent years. However, the low signal-
to-noise ratio (SNR) of scalp-recorded EEG signals limits the information transmission rate of 
BCIs. In recent years, steady-state visual evoked potentials (SSVEPS)-based BCIs have received 
increasing attention because of their advantages of high information transmission rate and less 
user training. In SSVEP-based BCI, the user gazes at multiple visual flicker blocks labeled by 
frequency or phase, and the resulting SSVEP exhibits the same stimulus properties as the target. 
Therefore, SSVEPs can be analyzed by target recognition algorithms to identify target stimuli.  
Target recognition algorithms are very important aspects of brain-computer interface systems 
and were first used for target detection by power spectral density analysis(PSDA) [1]. With the 
development of EEG signal processing techniques, spatial filtering techniques to improve the 
signal-to-noise ratio(SNR) of SSVEP by removing the background EEG signal have been applied 
to more efficient target identification methods. Widely used spatial filtering methods in SSVEP-
based BCI include typical correlation analysis (CCA) [2], minimum energy combination (MEC) 
[3], and so on. These methods have been shown to be more effective than the PSDA-based 
methods. In recent years, many more advanced target detection algorithms have been proposed, 
and the best results are obtained by the TRCA [4] and SSCOR [5] algorithms, where the former 
improves the signal-to-noise ratio and suppresses background EEG interference by learning a 
spatial filter that improves the signal-to-noise ratio by maximizing the recurrence among 
multiple trials, and the latter similarly designs a spatial filter with a set of training data 
segments to learn a common SSVEP response space to extract relevant components. 
The purpose of this study is to quantitatively compare the TRCA-based and SSCOR detection 
methods, while adding filter banks and integrated filter methods to further improve the 
algorithm identification performance based on these two algorithms. In evaluating the 
effectiveness and feasibility of these two methods for real BCI, the detection accuracy of the two 
methods is estimated separately from the simulated ITR. 
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2. Methodology 

2.1. Data Source 
Benchmark data from the brain-computer interface research group at Tsinghua University 
were used in this paper. EEG data were acquired using the Synamps2 EEG system with a 
sampling rate of 1000 Hz. data were acquired using a 64-electrode device based on the 
International Extended 10-20 system. data were collected from 35 subjects, with each subject 
acquiring 40 experiments, for a total of 6 sets. The duration of each experiment was 6 seconds. 
Specific information can be found in [6].  The data for each subject is a 4-dimensional matrix 

expressed as ( )
c p f dN N N N

cpfdX R    , Nc denotes the number of channels, Np denotes the number of 

sampling points, Nf denotes the number of targets, and Nd denotes the number of experimental 
blocks. EEG data from the nine electrode channels (Oz, O1, O2, Pz, POz, PO3, PO4, PO5, and PO6) 
most affected by SSVEP were used for analysis and evaluation in this study. 

2.2. Target Recognition Algorithm 
2.2.1. Task-Related Component Analysis(TRCA) 
Task-related component analysis is able to extract task-related components by maximizing the 
reproducibility of EEG data in each task. Assuming two source signals: task-related component 
( )s t and task-irrelevant component ( )n t , the linear model of the acquired multichannel EEG 

signal is assumed to be: 
 

1, 2,( ) ( ) ( ), 1, 2,...,j j j cx t a s t a n t j N                                                 (1) 
 
where j is the channel index 1, ja and 2, ja  is the mixing factor that projects the source signal to 
the EEG signal.The following equation is obtained by multiplying the multichannel EEG signal 
with the filter w : 
 

1, 2
1 1

( ) ( ) ( ( ) ( ))
c cN N

j j j j j
j j

y t w x t w a s t w a n t
 

                                                  (2) 

 

when 1, 2,1 1
1and 0c cN N

j j j jj j
wa wa

 
   , get the final solution: ( ) ( )y t s t . 

This problem can be solved by maximizing the inter-trial covariance with the following 
equation: 
 

                                                  
T

T
argmax

w S w

w Qw
                                                                      (3) 

 
The matrix S represents the sum of all possible combinations of trials with different frequencies: 
 

                                           
, 1

= Cov ( )
dN

i j
i j
i j

S X X




 ,                                                                  (4) 

 
The matrix Q denotes the sum of autocovariances for each frequency correspon- ding to trial: 
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, 1

= Cov (
dN

i j
i j

Q X X

 , )                                                                (5) 

 

The solution of the optimal weight vector trcaw  of Equation (3) is calculated from the 
eigenvectors of the matrix 1Q S . 

2.2.2. Sum of Squared Correlations (SSCOR) 
Sum of Squared Correlations maps a given EEG data to a common SSVEP space by constructing 
mappings sscorw . The equation of the sum of squares correlations is as follows. 

 

 
2

max ,
dN

T T
i i j j

i j

w X w X

                                                                   (6) 

 
Constraining the above objective function according to the SSVEP requirements: 
 

  
2

1 1,
2

,

max

1,

N
T

ii
i

T
i i i i

w C w

subject to w C w i



 


                                                       (7) 

 
1,C i denotes the cross-covariance matrix between the template signal and the SSVEP data 

segment, and ,Ci i denotes the auto-covariance matrix. The constraints in (7) can be decomposed 
,C = T
i i i iK K . by defing  

1 1
1 1,i iiG K C K  and i i iv K w .Solve the above optimization problem using the 

Lagrangian method and  find the eigenvector corresponding to the largest eigenvalue. The final 
representation of the spatial filter is as follows: 
 

1=sscor i iw K v                                                                           (8) 

 

Finally, the test data are projected into the optimized SSVEP space by sscorw . 

2.2.3. Filter-bank Analysis 
In this study, the filter bank analysis method [9] was used to mine the useful information in the 
harmonic components. The EEG data were divided into Nb subbands, and then the target 
detection method was applied to each subband separately, and the spatial filters were learned 
for each subband component to obtain the target detection scores of each subband 
corresponding to the target frequency, and then the correlation coefficients of the subband 
components were combined by weighted sum of squares to obtain the final detection scores as 
follows: 
 

 2
1

( )
bN

n
k

n

w n 


                                                                    (9) 

 

where  1.25( ) 0.25 1 bw n n and n N   is used to compensate for the decrease in SNR of SSVEP 
with increasing frequency. 
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2.2.4. The Ensemble Approach 
This study uses an ensemble approach to optimize the spatial filter and improve the SNR by 
extracting the common information of SSVEP [8]. An integrated spatial filter is finally created 
by concatenating all weighting vectors Nf. The SSVEP ensemble spatial filter c fN NW R  is 
designed as follows: 
 

1, 2,...,[ ]
fNW w w w                                                                   (10) 

2.3. Performance Evaluation 
In this study, detection accuracy and ITR are used as the main performance metrics for 
evaluating target detection methods.. Using the funnel-one cross-validation method, the data 
were divided into five training groups and one test group, and the spatial filters were derived 
from the training data, and SSVEP templates were constructed for each target frequency. the 
ITR (bits/minute) used in this study is defined as follows: 
 

2 2

60 (1 )
log log

( 1)

P
ITR N P

T N

 
  

 
                                                    (11) 

 
where P is the accuracy rate, T is the average time for target selection, and N is the number of 
targets. 

3. Result 

The average detection accuracy and simulated ITR of the basic SSCOR and TRCA methods are 
shown in Figure.1. The comparison between SSCOR and TRCA shows that the accuracy and ITR 
of SSCOR are higher than those of TRCA after a time window length of 0.5 s. However, all data 
of SSCOR before 0.5 s are inferior to those of TRCA, and the SSCOR method does not perform as 
well as In addition, the maximum value of ITR (239.57 bit/min) is present in the SSCOR method.  
The average detection accuracy of SSCOR and TRCA integrated methods and simulated ITR are 
shown in Figure 2. With the addition of the integrated method, the accuracy and ITR of both 
SSCOR and TRCA improved to some extent compared to their previous performance. In the long 
time window (after 0.5s), the overall accuracy of TRCA is slightly higher than that of SSCOR, but 
in the case of the ITR score, SSCOR reaches its highest score of 289.01 bits/min at around 0.4s, 
while TRCA reaches its maximum value of 262.63 bits/min at around 0.5s. 
 

 
Figure 1. Performance Comparison of SSCOR and TRCA Base Algorithms. (a): denotes the 

average detection accuracy, (b): denotes the average analog information transmission number 
rate ITR 
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Figure 2. Performance comparison of SSCOR and TRCA with ensemble approach. (a): denotes 
the average detection accuracy, (b): denotes the average analog information transfer number 

rate ITR 
 

 
Figure 3. Performance comparison of SSCOR and TRCA with filter bank preprocessing. (a): 

denotes the average detection accuracy and (b): denotes the average analog information 
transmission number rate ITR 

 
Filter banks were added to continue the comparison between these two methods. It has been 
shown in previous analyses that adding the integrated method can significantly improve 
performance, and both methods achieve good performance at a time length of 0.4 s. Therefore, 
0.4 s was chosen as the condition for the subsequent analysis. the average detection accuracy 
and simulated ITR for SSCOR and TRCA with the addition of the filter bank are shown in Figure 
3. It is clear from the figure that the SSCOR method always scores a little higher compared to 
the TRCA method and reaches a maximum value of 327.20 bits/min at a subband number of 5. 
From the simulated ITR performance above, it can be seen that the SSCOR method always has 
a higher performance compared to the TRCA method, thus proving its clear superiority. 

4. Conclusion 

In this study, a quantitative comparison of two target recognition methods based on SSCOR and 
TRCA in SSVEP-based BCI was conducted. The two methods were applied to a Benchmark 
dataset of 40 classes of targets, respectively, and the data were trained using the leave-one-out 
cross-validation method, which was evaluated in terms of detection accuracy and simulated 
ITR. In addition, based on the original method, an integration method is applied to find the 
common space filter as well as to further optimize the original base algorithm using the 
harmonic components of the filter bank, and the two algorithms are compared quantitatively. 
In summary, both methods show good performance, with SSCOR showing more outstanding 
performance for specific data lengths, and both methods perform better than TRCA in terms of 
accuracy as well as ITR after the integration process and the addition of filter banks. since the 
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purpose of this study is to provide a comprehensive compa- rison of the existing methods, it is 
possible to further improve the performance of BCIs performance combinations will be 
investigated in future work. 
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